Skip to main content
Log in

Nonlinear vibration semi-active control of automotive steering using magneto-rheological damper

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Traffic accidents are often caused by vibration of automotive steering because the vibration can make a vehicle run like a snake. A novel semi-active vibration control strategy of automotive steering with magneto-rheological (MR) damper is proposed in this paper. An adaptive RBF neural sliding mode controller is designed for the vibration system. It is showed that an equivalent dynamic model for the vibration system is established by using Lagrange method, and then treats it as actual system partially. A feedback control law is designed to make this nominal model stable. Uncertain part of system and outside disturbance are estimated using RBF neural network, and their upper boundary is obtained automatically. By constructing reasonable switch function, state variables can arrive at origin asymptotically along the sliding mode. Strong robust character of control system is proved by stability analysis and a numerical simulation example is performed to support this control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jocelyn I An overview of landing gear dynamics. NASA/TM–1999-209143

  2. Kim M-G, Jeong H-I Sensitivity analysis of chassis system to improve shimmy and brake judder vibration on steering wheel. SAE 960743

  3. Pacejka HB (1996) The wheel shimmy phenomenon. Ph.D. Thesis, Delft University of Technology

  4. Somieski G (1997) Shimmy analysis of a simple aircraft noise landing gear model using different mathematical methods. Aerosp Sci Technol 8:545–555

    Article  Google Scholar 

  5. Somieski G (2001) An eigenvalue method for calculation of stability and limit cycles in nonlinear systems. Nonlinear Dyn 26:3–22

    Article  MATH  Google Scholar 

  6. Zhou JX, Zhang L (2005) Incremental harmonic balance method for predicting amplitudes of a multi-D.O.F. nonlinear wheel shimmy system with combined coulomb and quadratic damping. J Sound Vib 279:403–416

    Article  ADS  Google Scholar 

  7. Kovacs AP (1998) Computational vibration analysis of vehicle shimmy by a power-work method. Veh Syst Dyn 29:341–364

    Article  Google Scholar 

  8. Lin Y, Li S (2004) Study on the bifurcation character of steering wheel self-excited shimmy of motor vehicle with dependent suspension. Chin J Mech Eng 40(12):187–191

    Article  MathSciNet  Google Scholar 

  9. Zhang Q, Chen Y (1995) Studying the stability and bifurcation character of automobile shimmy. J Tianjin Univ 28(3):409–414

    Google Scholar 

  10. Brandt ME, Chen G (1997) Bifurcation control of two nonlinear modals of cardiac activity. IEEE Trans Circuits Syst 44:1031–1043

    Article  Google Scholar 

  11. Gu G, Chen X, Sparks AG et al. (1999) Bifurcation stabilization with local out feedback. SIAM J Control Optim 37:934–956

    Article  MathSciNet  MATH  Google Scholar 

  12. Wang HO, Chen D, Chen G (1998) Bifurcation control of pathological heart rhythms. In: Proceedings of IEEE conference on control application, Trieste, Italy

    Google Scholar 

  13. Basso M, Evangelisti A, Genesio R, Test A (1998) On bifurcation control in time delay feedback systems. Int J Bifurc Chaos 8:713–721

    Article  MATH  Google Scholar 

  14. Chen G, Moiola JL, Wang HO (2000) Controlling bifurcations: theories, methods and applications. Int J Bifurc Chaos 10(3):511–548

    Article  MathSciNet  MATH  Google Scholar 

  15. Spencer BF Jr, Dyke SJ, Sain MK et al. (1997) Phenomenological model for magneto-rheological dampers. J Eng Mech 123(3):230–238

    Article  Google Scholar 

  16. Wereley NM, Pang L, Kamath GM (1998) Idealized hysteresis modeling of electro-rheological and magneto-rheological dampers. J Intell Mater Syst Struct 9(8):642–649

    Article  Google Scholar 

  17. Choi SB, Lee SK, Park YP (2001) A hysteresis model for the field-dependent damping force of a magneto-rheological damper. J Sound Vib 245(2):375–383

    Article  ADS  Google Scholar 

  18. Pan G, Matsuhisa H, Honda Y (2000) Analytical model of magneto-rheological damper and its application to the vibration control. In: IEEE international control conference, pp 1850–1855

    Google Scholar 

  19. Li WH, Yao GZ, Yeo SH et al. (2000) Testing and steady state modeling of a nonlinear MR damper under sinusoidal loading. Smart Mater Struct 9:95–102

    Article  ADS  Google Scholar 

  20. Schurter KC, Roschke PN (2000) Fuzzy modeling of a magneto-rheological damper using ANFIS. In: Proceedings of the IEEE international conference on fuzzy systems, pp 122–127

    Google Scholar 

  21. Wang D-H, Liao W-H (2001) Neural network modeling and controller for magneto-rheological fluid dampers. In: IEEE international fuzzy system conference, pp 1323–1326

    Google Scholar 

  22. Chang CC, Zhou L (2002) Neural network emulation of inverse dynamics for a magneto-rheological damper. J Struct Eng 128(2):231–239

    Article  Google Scholar 

  23. Sáez D, Cortés CE, Núñez A (2007) Hybrid adaptive predictive control for the multi-vehicle dynamic pick-up and delivery problem based on genetic algorithms and fuzzy clustering. Comput Oper Res 34(1):2–27

    Article  Google Scholar 

  24. Bianchessi N, Righini G (2007) Heuristic algorithms for the vehicle routing problem with simultaneous pick-up and delivery. Comput Oper Res 34(2):578–594

    Article  MATH  Google Scholar 

  25. Ying ZG, Zhu WQ, Soong TT (2003) A stochastic optimal semi-active control strategy for ER/MR damper. J Sound Vib 259(1):45–62

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Choi SB, Lee HS, Park YP (2002) H control performance of a full-vehicle suspension featuring magneto-rheological dampers. Veh Syst Dyn 38(5):341–360

    Article  Google Scholar 

  27. Lai CY, Liao WH (2002) Vibration control of a suspension system via a magneto-rheological fluid damper. J Vib Control 8(4):527–547

    Article  Google Scholar 

  28. Du H, Yim Sze K, Lam J (2005) Semi-active H control of vehicle suspension with magneto-rheological dampers. J Sound Vib 283:981–996

    Article  ADS  Google Scholar 

  29. Huang S-J, Chen H-Y (2006) Adaptive sliding controller with self-tuning fuzzy compensation for vehicle suspension control. Mechatronics 16:607–622

    Article  Google Scholar 

  30. Sun L, Cai X, Yang J (2007) Genetic algorithm-based optimum vehicle suspension design using minimum dynamic pavement load as a design criterion. J Sound Vib 301:18–27

    Article  ADS  Google Scholar 

  31. Guclu R, Gulez K (2008) Neural network control of seat vibrations of a nonlinear full vehicle model using PMSM. Math Comput Model 47:1356–1371

    Article  MATH  Google Scholar 

  32. Chang S-C (2007) Synchronization in a steer-by-wire vehicle dynamic system. Int J Eng Sci 45:628–643

    Article  Google Scholar 

  33. Simionescu PA, Tempea I, Loch NE (2001) Kinematic analysis of a two-degree-of-freedom steering mechanism used in rigid-axle vehicle. Proc Inst Mech Eng, D 215:803–812

    Article  Google Scholar 

  34. Data S, Pesce M, Reccia L (2004) Identification of steering system parameters by experimental measurements proceeding. Proc Inst Mech Eng, D 218:783–792

    Article  Google Scholar 

  35. Du Y, Lion A, Maißer P (2006) Modeling and control of an electromechanical steering system in full vehicle models. Proc Inst Mech Eng, I 220:239–249

    Google Scholar 

  36. Lin FJ, Wai RJ (2001) Hybrid control using recurrent fuzzy neural network for linear-induction motor servo drive. IEEE Trans Fuzzy Syst 9:102–115

    Article  Google Scholar 

  37. Efe MO, Unsal C, Kaynak O et al. (2004) Variable structure control of a class of uncertain systems. Automatica 40:59–64

    Article  MathSciNet  MATH  Google Scholar 

  38. Lin F, Wai R, Hong C (2001) Identification and control of rotary traveling wave ultrasonic motor using neural networks. IEEE Trans Control Syst Technol 9(4):672–680

    Article  Google Scholar 

  39. Huang JQ, Lewis FL (2003) Neural-network predictive control for nonlinear dynamic system with time-delay. IEEE Trans Neural Netw 14:377–389

    Article  Google Scholar 

  40. Yau H-T, Yan J-J (2009) Adaptive sliding mode control of a high precision ball-screw-driven stage. Nonlinear Anal, Real World Appl 10:1480–1489

    Article  MathSciNet  MATH  Google Scholar 

  41. Chen PC, Chen CW, Chiang WL (2009) GA-based modified adaptive fuzzy sliding mode controller for nonlinear systems. Expert Syst Appl 36:5872–5883

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Wei.

Additional information

Support by Doctor Fund 2010BSJJ016 and Basic Scientific Research Cost QN2011141 of Northwest A & F University.

Appendix: Coefficients expression in Eq. (7) and main simulation parameters of nominal model

Appendix: Coefficients expression in Eq. (7) and main simulation parameters of nominal model

Coefficients of Eq. (7) are written as bellow

Main simulation parameters of nominal model used by numerical analysis are given as follows J 1=J 2=15(kg m2/rad), J 3=6 (kg m2/rad), J 4=12 (kg m2/rad), c 1=c 2=50 (N m s/rad), c 3=20 (N m s/rad), c 4=60 (N m s/rad), k 1=k 2=5e004 (N m/rad), k 3=6e004 (Nm/rad), k 4=7e004 (N m/rad), \(c'_{1} = c'_{2} = 20\allowbreak (\mbox{N}\,\mbox{m}\,\mbox{s}/\mbox{rad})\), \(c'_{3} = c'_{4} = 10\ (\mbox{N}\,\mbox{m}\,\mbox{s}/\mbox{rad})\), m 1=m 2=12(kg), τ=0.03 (rad), μ=0.015, r w =0.35 (m), k =1.2e006 (N/m), L=0.15 (m), ρ=1.5e005 (N/m), k=9e004 (N/rad), D x1=D x2=0.06 (m), k α =1.4149, k β =0.0347.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Song, Y. Nonlinear vibration semi-active control of automotive steering using magneto-rheological damper. Meccanica 47, 2027–2039 (2012). https://doi.org/10.1007/s11012-012-9572-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-012-9572-z

Keywords

Navigation