Skip to main content
Log in

Sex-dependent differences in rat brown adipose tissue mitochondrial biogenesis and insulin signaling parameters in response to an obesogenic diet

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Marked sex-dependent differences in mitochondrial function and redox status have been found in brown adipose tissue (BAT) of control rats. Insulin also plays a role in the development and maintenance of this tissue. The aim was to investigate sexual dimorphism in the effects of diet-induced obesity on BAT mitochondrial function, as well as on insulin signaling pathway. 10-week-old Wistar rats of both sexes were fed a control diet or a palatable high-fat diet for 26 weeks. Serum markers of insulin sensitivity were analyzed. Mitochondrial DNA (mtDNA) content, mitochondrial oxidative activities, PGC-1α mRNA levels, as well as the protein levels of insulin receptor subunit β (IRβ), glucose transporter GLUT4, β3-adrenergic receptor (β3-AR), phosphatidylinositol 3-kinase, mitochondrial transcription factor A (TFAM), cytochrome c oxidase subunit IV (COX IV), and uncoupling protein 1 (UCP1) were measured in BAT. Obese females showed impaired systemic insulin sensitivity accompanied by diminished IRβ, GLUT4, and β3-AR protein levels in BAT. In addition, TFAM and COX IV protein and PGC-1α mRNA levels decreased in obese females, whereas mtDNA levels increased. In obese males, oxidative and thermogenic capacities rose and no significant changes were observed in the insulin signaling pathway elements. The reduction of the insulin signaling pathway in BAT of obese females may be responsible, at least partially, for the impaired biogenesis process, which could favor the increase of body weight found in this sex. In contrast, the enhanced mitochondrial functionality in the BAT of males would avoid increased oxidative damage and the impairment of insulin signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nechad M, Nedergaard J, Cannon B (1987) Noradrenergic stimulation of mitochondriogenesis in brown adipocytes differentiating in culture. Am J Physiol 253:C889–C894

    PubMed  CAS  Google Scholar 

  2. Quevedo S, Roca P, Pico C, Palou A (1998) Sex-associated differences in cold-induced UCP1 synthesis in rodent brown adipose tissue. Pflugers Arch 436:689–695

    Article  PubMed  CAS  Google Scholar 

  3. Nadal-Casellas A, Proenza AM, Gianotti M, Lladó I (2011) Brown adipose tissue redox status in response to dietary-induced obesity-associated oxidative stress in male and female rats. Stress 14:174–184

    PubMed  CAS  Google Scholar 

  4. Rodriguez-Cuenca S, Pujol E, Justo R, Frontera M, Oliver J, Gianotti M, Roca P (2002) Sex-dependent thermogenesis, differences in mitochondrial morphology and function, and adrenergic response in brown adipose tissue. J Biol Chem 277:42958–42963

    Article  PubMed  CAS  Google Scholar 

  5. Justo R, Frontera M, Pujol E, Rodriguez-Cuenca S, Llado I, Garcia-Palmer FJ, Roca P, Gianotti M (2005) Gender-related differences in morphology and thermogenic capacity of brown adipose tissue mitochondrial subpopulations. Life Sci 76:1147–1158

    Article  PubMed  CAS  Google Scholar 

  6. Valle A, Garcia-Palmer FJ, Oliver J, Roca P (2007) Sex differences in brown adipose tissue thermogenic features during caloric restriction. Cell Physiol Biochem 19:195–204

    Article  PubMed  CAS  Google Scholar 

  7. Nadal-Casellas A, Amengual-Cladera E, Proenza AM, Llado I, Gianotti M (2010) Long-term high-fat-diet feeding impairs mitochondrial biogenesis in liver of male and female rats. Cell Physiol Biochem 26:291–302

    Article  PubMed  CAS  Google Scholar 

  8. Ostronoff LK, Izquierdo JM, Enriquez JA, Montoya J, Cuezva JM (1996) Transient activation of mitochondrial translation regulates the expression of the mitochondrial genome during mammalian mitochondrial differentiation. Biochem J 316(Pt 1):183–191

    PubMed  CAS  Google Scholar 

  9. Michel S, Wanet A, De Pauw A, Rommelaere G, Arnould T, Renard P (2012) Crosstalk between mitochondrial (dys)function and mitochondrial abundance. J Cell Physiol 227:2297–2310

    Article  PubMed  CAS  Google Scholar 

  10. Fernandez-Silva P, Enriquez JA, Montoya J (2003) Replication and transcription of mammalian mitochondrial DNA. Exp Physiol 88:41–56

    Article  PubMed  CAS  Google Scholar 

  11. Puigserver P, Spiegelman BM (2003) Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev 24:78–90

    Article  PubMed  CAS  Google Scholar 

  12. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124

    Article  PubMed  CAS  Google Scholar 

  13. Maniura-Weber K, Goffart S, Garstka HL, Montoya J, Wiesner RJ (2004) Transient overexpression of mitochondrial transcription factor A (TFAM) is sufficient to stimulate mitochondrial DNA transcription, but not sufficient to increase mtDNA copy number in cultured cells. Nucleic Acids Res 32:6015–6027

    Article  PubMed  CAS  Google Scholar 

  14. Huang PI, Chen YC, Chen LH, Juan CC, Ku HH, Wang ST, Chiou SH, Chiou GY, Chi CW, Hsu CC, Lee HC, Chen LK, Kao CL (2011) PGC-1alpha mediates differentiation of mesenchymal stem cells to brown adipose cells. J Atheroscler Thromb 18:966–980

    Article  PubMed  CAS  Google Scholar 

  15. Kemnitz JW, Glick Z, Bray GA (1983) Ovarian hormones influence brown adipose tissue. Pharmacol Biochem Behav 18:563–566

    Article  PubMed  CAS  Google Scholar 

  16. Yoshioka K, Yoshida T, Wakabayashi Y, Nishioka H, Kondo M (1988) Reduced brown adipose tissue thermogenesis of obese rats after ovariectomy. Endocrinol Jpn 35:537–543

    Article  PubMed  CAS  Google Scholar 

  17. Lafontan M, Barbe P, Galitzky J, Tavernier G, Langin D, Carpene C, Bousquet-Melou A, Berlan M (1997) Adrenergic regulation of adipocyte metabolism. Hum Reprod 12(Suppl 1):6–20

    Article  PubMed  CAS  Google Scholar 

  18. Chaudhry A, Granneman JG (1999) Differential regulation of functional responses by beta-adrenergic receptor subtypes in brown adipocytes. Am J Physiol 277:R147–R153

    PubMed  CAS  Google Scholar 

  19. Lowell BB, Spiegelman BM (2000) Towards a molecular understanding of adaptive thermogenesis. Nature 404:652–660

    PubMed  CAS  Google Scholar 

  20. Guerra C, Navarro P, Valverde AM, Arribas M, Bruning J, Kozak LP, Kahn CR, Benito M (2001) Brown adipose tissue-specific insulin receptor knockout shows diabetic phenotype without insulin resistance. J Clin Invest 108:1205–1213

    PubMed  CAS  Google Scholar 

  21. Liu W, Singh R, Choi CS, Lee HY, Keramati AR, Samuel VT, Lifton RP, Shulman GI, Mani A (2012) Low density lipoprotein (LDL) receptor-related protein 6 (LRP6) regulates body fat and glucose homeostasis by modulating nutrient sensing pathways and mitochondrial energy expenditure. J Biol Chem 287:7213–7223

    Google Scholar 

  22. Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655–1657

    Article  PubMed  CAS  Google Scholar 

  23. Virkamaki A, Ueki K, Kahn CR (1999) Protein–protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. J Clin Invest 103:931–943

    Article  PubMed  CAS  Google Scholar 

  24. Fasshauer M, Klein J, Kriauciunas KM, Ueki K, Benito M, Kahn CR (2001) Essential role of insulin receptor substrate 1 in differentiation of brown adipocytes. Mol Cell Biol 21:319–329

    Article  PubMed  CAS  Google Scholar 

  25. Valverde AM, Arribas M, Mur C, Navarro P, Pons S, Cassard-Doulcier AM, Kahn CR, Benito M (2003) Insulin-induced up-regulated uncoupling protein-1 expression is mediated by insulin receptor substrate 1 through the phosphatidylinositol 3-kinase/Akt signaling pathway in fetal brown adipocytes. J Biol Chem 278:10221–10231

    Article  PubMed  CAS  Google Scholar 

  26. Suliman HB, Carraway MS, Welty-Wolf KE, Whorton AR, Piantadosi CA (2003) Lipopolysaccharide stimulates mitochondrial biogenesis via activation of nuclear respiratory factor-1. J Biol Chem 278:41510–41518

    Article  PubMed  CAS  Google Scholar 

  27. Holmstrom MH, Iglesias-Gutierrez E, Zierath JR, Garcia-Roves PM (2012) Tissue-specific control of mitochondrial respiration in obesity-related insulin resistance and diabetes. Am J Physiol Endocrinol Metab 302:E731–E739

    Google Scholar 

  28. Xu A, Chan KW, Hoo RL, Wang Y, Tan KC, Zhang J, Chen B, Lam MC, Tse C, Cooper GJ, Lam KS (2005) Testosterone selectively reduces the high molecular weight form of adiponectin by inhibiting its secretion from adipocytes. J Biol Chem 280:18073–18080

    Article  PubMed  CAS  Google Scholar 

  29. Gomez-Perez Y, Amengual-Cladera E, Catala-Niell A, Thomas-Moya E, Gianotti M, Proenza AM, Llado I (2008) Gender dimorphism in high-fat-diet-induced insulin resistance in skeletal muscle of aged rats. Cell Physiol Biochem 22:539–548

    Article  PubMed  CAS  Google Scholar 

  30. Nadal-Casellas A, Proenza AM, Llado I, Gianotti M (2012) Sex-dependent differences in rat hepatic lipid accumulation and insulin sensitivity in response to diet-induced obesity. Biochem Cell Biol 90:164–172

    Google Scholar 

  31. Kumagai S, Holmang A, Bjorntorp P (1993) The effects of oestrogen and progesterone on insulin sensitivity in female rats. Acta Physiol Scand 149:91–97

    Article  PubMed  CAS  Google Scholar 

  32. Kahn BB, Flier JS (2000) Obesity and insulin resistance. J Clin Invest 106:473–481

    Article  PubMed  CAS  Google Scholar 

  33. Marra F, Gastaldelli A, Svegliati Baroni G, Tell G, Tiribelli C (2008) Molecular basis and mechanisms of progression of non-alcoholic steatohepatitis. Trends Mol Med 14:72–81

    Article  PubMed  CAS  Google Scholar 

  34. Shulman GI (2000) Cellular mechanisms of insulin resistance. J Clin Invest 106:171–176

    Article  PubMed  CAS  Google Scholar 

  35. Lionetti L, Mollica MP, Lombardi A, Cavaliere G, Gifuni G, Barletta A (2009) From chronic overnutrition to insulin resistance: the role of fat-storing capacity and inflammation. Nutr Metab Cardiovasc Dis 19:146–152

    Article  PubMed  CAS  Google Scholar 

  36. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto NJ, Enerback S, Nuutila P (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360:1518–1525

    Article  PubMed  CAS  Google Scholar 

  37. Ravussin E, Galgani JE (2011) The implication of brown adipose tissue for humans. Annu Rev Nutr 31:33–47

    Article  PubMed  CAS  Google Scholar 

  38. Ouellet V, Labbe SM, Blondin DP, Phoenix S, Guerin B, Haman F, Turcotte EE, Richard D, Carpentier AC (2012) Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J Clin Invest 122:545–552

    Article  PubMed  Google Scholar 

  39. Inagaki H, Hayashi T, Matsushima Y, Lin KH, Maeda S, Ichihara S, Kitagawa Y, Saito T (2000) Isolation of rat mitochondrial transcription factor A (r-Tfam) cDNA. DNA Seq 11:131–135

    PubMed  CAS  Google Scholar 

  40. Sclafani A, Springer D (1976) Dietary obesity in adult rats: similarities to hypothalamic and human obesity syndromes. Physiol Behav 17:461–471

    Article  PubMed  CAS  Google Scholar 

  41. Pickavance LC, Wilding JP (2007) Effects of S 15511, a therapeutic metabolite of the insulin-sensitizing agent S 15261, in the Zucker Diabetic Fatty rat. Diabetes Obes Metab 9:114–120

    Article  PubMed  CAS  Google Scholar 

  42. Cacho J, Sevillano J, de Castro J, Herrera E, Ramos MP (2008) Validation of simple indexes to assess insulin sensitivity during pregnancy in Wistar and Sprague-Dawley rats. Am J Physiol Endocrinol Metab 295:E1269–E1276

    Article  PubMed  CAS  Google Scholar 

  43. Chrzanowska-Lightowlers ZM, Turnbull DM, Lightowlers RN (1993) A microtiter plate assay for cytochrome c oxidase in permeabilized whole cells. Anal Biochem 214:45–49

    Article  PubMed  CAS  Google Scholar 

  44. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  45. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  46. Thomas PS, Farquhar MN (1978) Specific measurement of DNA in nuclei and nucleic acids using diaminobenzoic acid. Anal Biochem 89:35–44

    Article  PubMed  CAS  Google Scholar 

  47. Justo R, Oliver J, Gianotti M (2005) Brown adipose tissue mitochondrial subpopulations show different morphological and thermogenic characteristics. Mitochondrion 5:45–53

    Article  PubMed  CAS  Google Scholar 

  48. Nakano K, Tarashima M, Tachikawa E, Noda N, Nakayama T, Sasaki K, Mizoguchi E, Matsuzaki M, Osawa M (2005) Platelet mitochondrial evaluation during cytochrome c and dichloroacetate treatments of MELAS. Mitochondrion 5:426–433

    Article  PubMed  CAS  Google Scholar 

  49. Amengual-Cladera E, Llado I, Gianotti M, Proenza AM (2012) Sex differences in the effect of high-fat diet feeding on rat white adipose tissue mitochondrial function and insulin sensitivity. Metabolism 61:1108–1117

    Article  PubMed  CAS  Google Scholar 

  50. Chernogubova E, Cannon B, Bengtsson T (2004) Norepinephrine increases glucose transport in brown adipocytes via beta3-adrenoceptors through a cAMP, PKA, and PI3-kinase-dependent pathway stimulating conventional and novel PKCs. Endocrinology 145:269–280

    Article  PubMed  CAS  Google Scholar 

  51. Marette A, Bukowiecki LJ (1989) Stimulation of glucose transport by insulin and norepinephrine in isolated rat brown adipocytes. Am J Physiol 257:C714–C721

    PubMed  CAS  Google Scholar 

  52. Dallner OS, Chernogubova E, Brolinson KA, Bengtsson T (2006) Beta3-adrenergic receptors stimulate glucose uptake in brown adipocytes by two mechanisms independently of glucose transporter 4 translocation. Endocrinology 147:5730–5739

    Article  PubMed  CAS  Google Scholar 

  53. Germack R, Starzec AB, Vassy R, Perret GY (1997) Beta-adrenoceptor subtype expression and function in rat white adipocytes. Br J Pharmacol 120:201–210

    Article  PubMed  CAS  Google Scholar 

  54. Roca P, Rodriguez AM, Oliver P, Bonet ML, Quevedo S, Pico C, Palou A (1999) Brown adipose tissue response to cafeteria diet-feeding involves induction of the UCP2 gene and is impaired in female rats as compared to males. Pflugers Arch 438:628–634

    Article  PubMed  CAS  Google Scholar 

  55. Chowanadisai W, Bauerly KA, Tchaparian E, Wong A, Cortopassi GA, Rucker RB (2010) Pyrroloquinoline quinone stimulates mitochondrial biogenesis through cAMP response element-binding protein phosphorylation and increased PGC-1alpha expression. J Biol Chem 285:142–152

    Article  PubMed  CAS  Google Scholar 

  56. Nadal-Casellas A, Proenza AM, Llado I, Gianotti M (2011) Effects of ovariectomy and 17-beta estradiol replacement on rat brown adipose tissue mitochondrial function. Steroids 76:1051–1056

    Article  PubMed  CAS  Google Scholar 

  57. Simó R, Barbosa-Desongles A, Hernandez C, Selva DM (2012) IL1beta Down-regulation of Sex Hormone-Binding Globulin Production by Decreasing HNF-4alpha Via MEK-1/2 and JNK MAPK Pathways. Mol Endocrinol. doi:10.1210/me.2012-1152

  58. Morisset AS, Blouin K, Tchernof A (2008) Impact of diet and adiposity on circulating levels of sex hormone-binding globulin and androgens. Nutr Rev 66:506–516

    Article  PubMed  Google Scholar 

  59. Victor VM, Rocha M, Herance R, Hernandez-Mijares A (2011) Oxidative stress and mitochondrial dysfunction in type 2 diabetes. Curr Pharm Des 17:3947–3958

    Article  PubMed  CAS  Google Scholar 

  60. Samuel VT, Liu ZX, Qu X, Elder BD, Bilz S, Befroy D, Romanelli AJ, Shulman GI (2004) Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem 279:32345–32353

    Article  PubMed  CAS  Google Scholar 

  61. Beyer TA, Xu W, Teupser D, auf dem Keller U, Bugnon P, Hildt E, Thiery J, Kan YW, Werner S (2008) Impaired liver regeneration in Nrf2 knockout mice: role of ROS-mediated insulin/IGF-1 resistance. EMBO J 27:212–223

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Dirección General de Investigación y Gestión del Plan Nacional de I + D + i (SAF2010-21792) and Fondo de Investigaciones Sanitarias (PI060293) of the Spanish Government and funds from Comunitat Autònoma de les Illes Balears and FEDER (31/2011). A. Nadal-Casellas was funded by a grant from the Comunitat Autònoma de les Illes Balears. We thank Dr. Hidetoshi Inagaki for providing the antiserum against TFAM.

Conflict of interest

The authors have declared that no conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gianotti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nadal-Casellas, A., Bauzá-Thorbrügge, M., Proenza, A.M. et al. Sex-dependent differences in rat brown adipose tissue mitochondrial biogenesis and insulin signaling parameters in response to an obesogenic diet. Mol Cell Biochem 373, 125–135 (2013). https://doi.org/10.1007/s11010-012-1481-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1481-x

Keywords

Navigation