Skip to main content
Log in

Thermal state of a concentric quarter spherical enclosure subjected to air free convection

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The average temperature difference between the walls of a cavity consisting of two concentric quarter spheres and subjected to an air natural convective flow was determined. The work was performed numerically through volume control method based on the SIMPLE algorithm. The thermal state was determined for several combinations of the aspect ratio varying from 0.05 to 0.35 and Rayleigh number with elevated values reaching 6.76 × 1011. A new correlation has been proposed, allowing thermal sizing of this type of cavity which could be used in different fields of engineering such as electronics and building.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

\(A\) :

Aspect ratio \(A = L/R_{{\text{i}}}\) (–)

\(a\) :

Thermal diffusivity (m2s−1)

\(C_{{\text{p}}}\) :

Specific heat at constant pressure (J kg−1 K−1)

\(\vec{e}_{{\text{g}}}\) :

Unit vector opposite to the gravity direction

\(g\) :

Gravity acceleration (m s2)

\(k\) :

Coefficient defined in Eq. (11)

\(L\) :

Air layer thickness (m)

\(m\) :

Exponent defined in Eq. (11)

\(n\) :

Outgoing normal to surface \(S\)

\(\left( {\overline{{{\text{Nu}}}}_{{{L}}} } \right)_{{\left[ {28} \right]}}\) :

Average Nusselt number calculated from ref. [28] (–)

\({\text{Pr}}\) :

Prandtl number (–)

\(p\) :

Pressure (Pa)

\(p^{*}\) :

Dimensionless pressure (–)

\(r\) :

Radial direction (m)

\(R_{{\text{e}}}\) :

Outer radius (m)

\(R_{{\text{i}}}\) :

Internal radius (m)

\({\text{Ra}}_{{{L}}}^{{}}\) :

Rayleigh number (–)

\( S\) :

Surface (m2)

\(T\) :

Temperature (K)

\( T_{{\text{c}}}\) :

Temperature of the external wall (K)

\(T_{{\text{h}}}\) :

Local temperature of the internal wall (K)

\(\overline{T}_{h}\) :

Average temperature of the internal wall (K)

\(T^{*}\) :

Dimensionless temperature (–)

\(\vec{u}\) :

Vector velocity (m s−1)

\(\vec{u}^{*}\) :

Dimensionless vector velocity (–)

\(\beta\) :

Volumetric expansion coefficient (K−1)

\(\delta\) :

Deviation between \(\overline{\Delta T}\) and \(\left( {\overline{\Delta T} } \right)_{{\left[ {28} \right]}}\)

\(\overline{\Delta T}\) :

Average temperature difference (K)

\(\left( {\overline{\Delta T} } \right)_{{\left[ {28} \right]}}\) :

\(\overline{\Delta T}\) Calculated from Ref. \(\left[ {28} \right]\)

\(\nabla^{*2}\) :

Spherical Laplacian operator

\(\vec{\nabla }^{*}\) :

Nabla operator

\(\varphi\) :

Heat flux (Wm−2)

\(\lambda\) :

Thermal conductivity (Wm−1 K−1)

\(\mu\) :

Dynamic viscosity (Pa s)

\(\rho\) :

Density (kg m−3)

References

  1. Oztop HF, Almeshaal M, Kolsi L, Rashidi MM, Ali ME. Natural convection and irreversibility evaluation in a cubic cavity with partial opening in both top and bottom sides. Entropy. 2019;21(2):116.

    Article  CAS  Google Scholar 

  2. Basak T, Anandalakshmi R, Biswal P. Analysis of convective heat flow visualization within porous right angled triangular enclosures with a concave/convex hypotenuse. Numer Heat Transf Part A Appl. 2013;64(8):621–47.

    Article  CAS  Google Scholar 

  3. Ferhi M, Djebali R, Abboudi S, Kharroubi H. Conjugate natural heat transfer scrutiny in differentially heated cavity partitioned with a conducting solid using the lattice Boltzmann method. J Therm Anal Calorim. 2019;138:3065–88.

    Article  CAS  Google Scholar 

  4. Selimefendigil F, Öztop HF. Conjugate natural convection in a nanofluid filled partitioned horizontal annulus formed by two isothermal cylinder surfaces under magnetic field. Int J Heat Mass Transf. 2017;108:156–71.

    Article  CAS  Google Scholar 

  5. Izadi M, Oztop HF, Sheremet MA, Mehryan SAM, Abu-Hamdeh N. Coupled FHD-MHD free convection of a hybrid nanoliquid in an inversed T-shaped enclosure occupied by partitioned porous media. Numer Heat Transf Part A Appl. 2019;76(6):479–98.

    Article  Google Scholar 

  6. Selimefendigil F. Öztop HF, MHD mixed convection and entropy generation of power law fluids in a cavity with a partial heater under the effect of a rotating cylinder. Int J Heat Mass Transf. 2016;98:40–51.

    Article  Google Scholar 

  7. Sheremet MA, Grosan T, Pop I. Thermal convection in a chamber filled with a nanosuspension driven by a chemical reaction using Tiwari and Das’ model. Int J Numer Methods Heat Fluid Flow. 2020;31(1):452–70.

    Article  Google Scholar 

  8. Kolsi L, Alrashed AAAA, Al-Salem K, Oztop HF, Borjini MN. Control of natural convection via inclined plate of CNT-water nanofluid in an open sided cubical enclosure under magnetic field. Int J Heat Mass Transf. 2017;111:1007–18.

    Article  CAS  Google Scholar 

  9. Mahian O, Kianifar A, Kalogirou SA, Pop I, Wongwises S. A review of the applications of nanofluids in solar energy. Int J Heat Mass Transf. 2013;57:582–94.

    Article  CAS  Google Scholar 

  10. Sheikholeslami M, Farshad SA. Nanoparticle transportation inside a tube with quad-channel tapes involving solar radiation. Powder Technol. 2021;378(Part A):145–59.

    Article  CAS  Google Scholar 

  11. Sheikholeslami M, Farshad SA, Shafee A, Babazadeh H. Performance of solar collector with turbulator involving nanomaterial turbulent regime. Renew Energy. 2021;163:1222–37.

    Article  Google Scholar 

  12. LeBa T, Mahian O, Wongwises S, ISzilágyi M. Review on the recent progress in the preparation and stability of graphene-based nanofluids. J Therm Anal Calorim. 2020;142:1145–72.

    Article  Google Scholar 

  13. Abu-Nada E, Pop I, Mahian O. A dissipative particle dynamics two-component nanofluid heat transfer model: application to natural convection. Int J Heat Mass Transf. 2019;133:1086–98.

    Article  CAS  Google Scholar 

  14. Sheikholeslami M, Arabkoohsar A, Shafee A, Kamal A, Ismail R. Second law analysis of a porous structured enclosure with nano-enhanced phase change material and under magnetic force. J Therm Anal Calori. 2019;140:2585–99.

    Article  Google Scholar 

  15. Ghalambaz M, Sheremet MA, Mehryan SAM, Kashkooli FM, Pop I. Local thermal non-equilibrium analysis of conjugate free convection within a porous enclosure occupied with Ag–MgO hybrid nanofluid. J Therm Anal Calorim. 2019;135:1381–98.

    Article  CAS  Google Scholar 

  16. Bondarenko DS, Sheremet MA, Oztop HF, Abu-Hamdeh N. Mixed convection heat transfer of a nanofluid in a lid-driven enclosure with two adherent porous blocks. J Therm Anal Calorim. 2019;135:1095–105.

    Article  CAS  Google Scholar 

  17. Chamkha AJ, Ismael MA. Conjugate heat transfer in a porous cavity filled with nanofluids and heated by a triangular thick wall. Int J Therm Sci. 2013;67:135–51.

    Article  CAS  Google Scholar 

  18. Baïri A, Alilat N. Thermal design of a spherical electronic device naturally cooled by means of water–copper nanofluid saturated porous media. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09851-0.

    Article  Google Scholar 

  19. Baïri A, Zarco-Pernia E, García de María JM. A review on natural convection in enclosures for engineering applications. The particular case of the parallelogrammic diode cavity. Appl Therm Eng. 2014;63:304–22.

    Article  Google Scholar 

  20. Baïri A. Transient thermal characteristics of airborne electronic equipment with discrete hot bands in a confined environment. Appl Energy. 2008;85(10):951–67.

    Article  Google Scholar 

  21. Haddad O, Baïri A, Alilat N, Bauzin JG, Laraqi N. Free convection in ZnO nanofluid-filled and tilted hemispherical enclosures containing a cubic electronic device. Int Commun Heat Mass Transf. 2017;87:204–11.

    Article  CAS  Google Scholar 

  22. Shiina Y, Fujimura K, Kunugi T, Akino N. Natural convection in hemispherical enclosure heated from below. Int J Heat Mass Transf. 1994;37(11):1605–17.

    Article  Google Scholar 

  23. Lewandowski WM, Khubeiz JM, Kubski P, Beiszk H, Wilczewski T, Szymanski S. Natural convection heat transfer from complex surface. Int J Heat Mass Transf. 1998;41(12):1857–68.

    Article  CAS  Google Scholar 

  24. Baïri A, Laraqi N. Thermal performance of nanofluid saturated porous medium on cooling electronics contained in an inclined hemispherical enclosure. Int J Mod Phys C. 2018;29(6):1850039.

    Article  Google Scholar 

  25. Alilat N. Natural convective heat transfer in the air-filled interstice between inclined concentric hemispheres: application to thermoregulation in electronics. Int J Numer Methods Heat Fluid Flow. 2017;27(10):2375–84.

    Article  Google Scholar 

  26. Baïri A, Laraqi N. Experimental quantification of natural convective heat transfer within annulus space filled with a H2O–Cu nanofluid saturated porous medium. Appl Electron Cool Exp Heat Transf. 2019;32(4):364–75.

    Article  Google Scholar 

  27. Baïri A, Alilat N, Déniz QF. Experimental study of free convective heat transfer through nanofluid saturated porous media around a spherical electronic component. Heat Mass Transf. 2020;56(11):3085–92. https://doi.org/10.1007/s00231-020-02908-8.

    Article  CAS  Google Scholar 

  28. Raithby G, Hollands K. A general method of obtaining approximate solutions to laminar and turbulent free convection problems. Adv Heat Transf. 1975;11:265–315.

    Article  Google Scholar 

  29. Teertstra P, Yovanovich M, Culham JR. Natural convection measurements for a concentric spherical enclosure. J Heat Transf. 2006;128:580–7.

    Article  Google Scholar 

  30. Garg VK. Natural convection between concentric spheres. Int J Heat Mass Transf. 1992;35(8):1935–45.

    Article  CAS  Google Scholar 

  31. Bejan A. Convection heat transfer. fourth. Hoboken: Wiley; 2013. https://doi.org/10.1002/9781118671627.

    Book  Google Scholar 

  32. Patankar SV. Numerical heat transfer and fluid flow. Taylor and Francis Publishers; 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Baïri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baïri, A., Martín-Garín, A., Ilinca, A. et al. Thermal state of a concentric quarter spherical enclosure subjected to air free convection. J Therm Anal Calorim 147, 3703–3708 (2022). https://doi.org/10.1007/s10973-021-10739-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10739-w

Keywords

Navigation