Skip to main content
Log in

Diffusion of liquid hydrogen in time-dependent MHD mixed convective flow

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

An innovative study on liquid hydrogen diffusion in time-dependent mixed convection flow is carried out in the presence of magnetic field effects. In fact, this is the first approach to analyze such flow problems, and also this is the first research paper to study the non-uniform heat sink/source and nonlinear chemical reaction in the presence of liquid hydrogen diffusion. Initially, the governing equations are reduced to dimensionless form by using non-similar transformations and are linearized by applying quasilinearization technique. Then, the finite difference approximation is utilized to discretize the resulting equations. The mixed convection is analyzed along with exponentially stretching surface through various graphs on profiles as well as gradients. The results display that the non-uniform heat source parameter increases the fluid velocity as well as temperature, and the magnetic parameter reduces the friction at the wall. Specifically, the skin friction coefficient decreases about 40% in the presence of magnetic field. The mass transfer rate increases for high-order chemical reaction and for destructive chemical reaction rate. The mass transfer rate is found to be high for the diffusion of liquid nitrogen than that for the diffusion of liquid hydrogen. In fact, the mass transfer rate increases about 22% for the diffusion of liquid nitrogen. This study can assist the design engineers who are working in pertain to the diffusion of liquid gases in mixed convection regimes. Also, the obtained data in the present study can be more useful for future investigations about time-dependent mixed convection nanofluid flow problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\( f \) :

Dimensionless stream function

\( N = \frac{{\lambda_{1} }}{\lambda } \) :

Buoyancy ratio parameter

\( B^{*} \) :

Temperature-dependent heat sink/source

\( U_{\infty } \) :

Free stream velocity constant

\( T_{{{\text{w}}_{0} }} \) :

Reference temperature

C, D :

Species concentration and mass diffusivity, respectively

\( A^{*} \) :

Space-dependent heat source/sink

\( C_{{{\text{w}}_{0} }} \) :

Reference concentration

\( B_{0} \) :

Magnetic field strength

\( R \) :

Dimensionless species concentration

\( Q \) :

Dimensionless temperature

\( T_{\text{w}} \) :

Temperature at the wall

\( C_{\infty } \) :

Ambient species concentration

\( C_{\text{f}} \) :

Skin friction coefficient

\( k \) :

Thermal conductivity

\( C_{\text{p}} \) :

Specific heat due to constant pressure

\( g \) :

Acceleration due to gravity

\( {\text{Re}} = \frac{{U_{0} L}}{\nu } \) :

Reynolds number

\( C_{\text{w}} \) :

Concentration at the wall

\( {\text{Nu}} \) :

Nusselt number

\( U_{0} \) :

Reference velocity

\( P \) :

Dimensionless velocity

\( L \) :

Characteristic length

\( k_{1} \) :

Chemical reaction rate

\( x,y \) :

Cartesian coordinates

\( { \Pr } = \frac{\nu }{{\alpha_{\text{m}} }} \) :

Prandtl number

\( T_{\infty } \) :

Ambient temperature

\( t \) :

Time

\( M = \,\frac{{B_{0} }}{{U_{0} }}\sqrt {\frac{\sigma \nu }{\rho }} \) :

Magnetic parameter

\( {\text{Sh}} \) :

Sherwood number

\( v \) :

Velocity component in the \( y \)-direction

\( n \) :

Order of chemical reaction

\( {\text{Sc}} = \frac{\nu }{D} \) :

Schmidt number

\( U_{\text{w}} \) :

Stretching wall velocity

\( T \) :

Temperature

\( u \) :

Velocity component in the \( x \)-direction

\( {\text{Ec}} = \frac{{U_{0}^{2} }}{{C_{\text{p}} (T_{{{\text{w}}_{0} }} - T_{\infty } )}} \) :

Eckert Number

\( q^{\prime\prime\prime} = \left( {\frac{{kU_{\text{w}} \left( {x,t} \right)}}{x\nu }} \right)\left[ {A^{*} \left( {T_{\text{w}} - T_{\infty } } \right)P + B^{*} (T - T_{\infty } )} \right] \) :

Non-uniform heat sink/source

\( {\text{Gr}} = \frac{{g\beta (T_{{{\text{w}}_{0} }} - T_{\infty } )L^{3} }}{{\nu^{2} }} \), \( {\text{Gr}}^{*} = \frac{{g\beta^{*} (C_{{{\text{w}}_{0} }} - C_{\infty } )L^{3} }}{{\nu^{2} }} \) :

Grashof numbers due to temperature and concentration, respectively

\( \lambda = \frac{\text{Gr}}{{{\text{Re}}^{2} }} \), \( \lambda_{1} = \frac{{{\text{Gr}}^{*} }}{{{\text{Re}}^{2} }} \) :

Buoyancy parameters due to temperature and concentration gradients, respectively

\( \varepsilon = \,\frac{{U_{\infty } }}{{U_{0} }} \) :

Ratio of mainstream velocity to the reference velocity

\( \alpha_{\text{m}} \) :

Thermal diffusivity

\( \alpha \) :

Unsteady parameter

\( \xi ,\eta ,\tau \) :

Transformed variables

\( \Delta \) :

Chemical reaction parameter

\( \beta ,\beta^{*} \) :

Volumetric coefficients of thermal and concentration expansions, respectively

\( \phi \left( \tau \right) \) :

Unsteady function of \( \tau \)

\( \nu \) :

Kinematic viscosity

\( \rho \) :

Density

\( \psi \) :

Stream function

\( \sigma \) :

Electrical conductivity

References

  1. Patil PM, Shashikant A, Hiremath PS. Influence of liquid hydrogen and nitrogen on MHD triple diffusive mixed convection nanoliquid flow in presence of surface roughness. Int J Hydrog Energy. 2018;43:20101–17.

    Article  CAS  Google Scholar 

  2. Patil PM, Shashikant A, Hiremath PS, Momoniat E. Influence of surface roughness on multidiffusive mixed convective nanofluid flow. Phys Scripta. 2019;94:055201.

    Article  CAS  Google Scholar 

  3. Patil PM, Shashikant A, Hiremath PS. Effects of surface roughness on mixed convection nanoliquid flow over slender cylinder with liquid hydrogen diffusion. Int J Hydrog Energy. 2019;44:11121–33.

    Article  CAS  Google Scholar 

  4. Patil PM, Shashikant A, Hiremath PS. Diffusion of liquid hydrogen and oxygen in nonlinear mixed convection nanofluid flow over vertical cone. Int J Hydrog Energy. 2019;44:17061–71.

    Article  CAS  Google Scholar 

  5. Patil PM, Shashikant A, Hiremath PS, Roy S. Study of liquid oxygen and hydrogen diffusive flow past a sphere with rough surface. Int J Hydrog Energy. 2019;44:26624–36.

    Article  CAS  Google Scholar 

  6. Ishak A. MHD boundary layer flow due to an exponentially stretching sheet with radiation effect. Sains Malays. 2011;4(4):391–5.

    Google Scholar 

  7. Mahdy A. Unsteady mixed convection boundary layer flow and heat transfer of nanofluids due to stretching sheet. Nucl Eng Des. 2012;249:248–55.

    Article  CAS  Google Scholar 

  8. Mukhopadhyay S. Slip effects on MHD boundary layer flow over an exponentially stretching sheet with suction or blowing and thermal radiation. Ain Shams Eng J. 2013;4:485–91.

    Article  Google Scholar 

  9. Ishak A, Nazar R, Pop I. Unsteady mixed convection boundary layer flow due to stretching vertical surface. Arab J Sci Eng. 2006;31(2B):165–82.

    Google Scholar 

  10. Selimefendigil F, Chamkha AJ. Magnetohydrodynamics mixed convection in a power law nanofluid-filled triangular cavity with an opening using Tiwari and Das model. J Therm Anal Calorim. 2019;135(1):419–36.

    Article  CAS  Google Scholar 

  11. Golafshan B, Rahimi AB. Effects of radiation on mixed convection stagnation-point flow of MHD third-grade nanofluid over a vertical stretching sheet. J Therm Anal Calorim. 2019;135(1):533–49.

    Article  CAS  Google Scholar 

  12. Mukhopadhyay S. MHD boundary layer flow and heat transfer over an exponentially stretching sheet embedded in a thermally stratified medium. Alex Eng J. 2013;52:259–65.

    Article  Google Scholar 

  13. Toghraie D, Sarlak S, Yousefzadeh S, Akbari OA, Sarlak R, Assadi F. Numerical investigation of MHD mixed convection of Water/CuO nanofluid in a square enclosure with vortex generators in different arrangements. Heat Transf Res. 2019. https://doi.org/10.1615/HeatTransRes.2018026153.

    Article  Google Scholar 

  14. Toghraie D, Alempour SM, Afrand M. Experimental determination of viscosity of water based magnetite nanofluid for application in heating and cooling systems. J Magn Magn Mater. 2016;417:243–8.

    Article  CAS  Google Scholar 

  15. Afrand M, Toghraie D, Karimipour A, Wongwises S. A numerical study of natural convection in a vertical annulus filled with gallium in the presence of magnetic field. J Magn Magn Mater. 2017;430:22–8.

    Article  CAS  Google Scholar 

  16. Afrand M, Sina N, Teimouri H, Mazaheri A, Safaei MR, Esfe MH, Kamali J, Toghraie D. Effect of magnetic field on free convection in inclined cylindrical annulus containing molten potassium. Int J Appl Mech. 2015;7:1550052.

    Article  Google Scholar 

  17. Sarlak R, Yousefzadeh S, Akbari OA, Toghraie D, Sarlak S, Assadi F. The investigation of simultaneous heat transfer of water/Al2O3 nanofluid in a close enclosure by applying homogeneous magnetic field. Int J Mech Sci. 2017;133:674–88.

    Article  Google Scholar 

  18. Foroutan S, Haghshenas A, Hashemian M, Eftekhari SA, Toghraie D. Spatial buckling analysis of current-carrying nanowires in the presence of a longitudinal magnetic field accounting for both surface and nonlocal effects. Phys E Low Dimen Syst Nanostruct. 2018;97:191–205.

    Article  CAS  Google Scholar 

  19. Mousavi SM, Darzi AAR, Akbari OA, Toghraie D, Marzban A. Numerical study of biomagnetic fluid flow in a duct with a constriction affected by a magnetic field. Magn Magn Mater. 2019;473:42–50.

    Article  CAS  Google Scholar 

  20. Barnoon P, Toghraie D, Eslami F, Mehmandoust B. Entropy generation analysis of different nanofluid flows in the space between two concentric horizontal pipes in the presence of magnetic field: single-phase and two-phase approaches. Comp Math Appl. 2019;77:662–92.

    Article  Google Scholar 

  21. Barnoon P, Toghraie D, Dehkordi RB, Abed H. MHD mixed convection and entropy generation in a lid- driven cavity with rotating cylinders filled by a nanofluid using two phase mixture model. Magn Magn Mater. 2019;483:224–48.

    Article  CAS  Google Scholar 

  22. Zheng L, Wang L, Zhang X. Analytic solutions of unsteady boundary flow and heat transfer on a permeable stretching sheet with non-uniform heat source/sink. Commun Nonlinear Sci Numer Simulat. 2011;16:731–40.

    Article  Google Scholar 

  23. Pal D. Combined effects of non-uniform heat source/sink and thermal radiation on heat transfer over an unsteady permeable stretching surface. Commun Nonlinear Sci Numer Simulat. 2011;16:1890–904.

    Article  Google Scholar 

  24. Patil PM, Roy S, Pop I. Flow and heat transfer over a moving vertical plate in a parallel free stream: role of internal heat generation or absorption. Chem Eng Commun. 2012;199(5):658–72.

    Article  CAS  Google Scholar 

  25. Dehghani MS, Toghraie D, Mehmandoust B. Effect of MHD on the flow and heat transfer characteristics of nanofluid in a grooved channel with internal heat generation. Int J Num Methods Heat Fluid Flow. 2019;29:1403–31.

    Article  Google Scholar 

  26. Patil PM, Chamkha AJ, Roy S. Effects of chemical reaction on mixed convection flow of a polar fluid through a porous medium in the presence of internal heat generation. Meccanica. 2012;47(2):483–99.

    Article  Google Scholar 

  27. Patil PM, Roy S, Pop I. Chemical reaction effects on unsteady mixed convection boundary layer flow past a permeable slender vertical cylinder due to a nonlinearly stretching velocity. Chem Eng Commun. 2013;200:398–417.

    Article  CAS  Google Scholar 

  28. Shehzad SA, Hayat T, Qasim M, Asghar S. Effects of mass transfer on MHD flow of Casson fluid with chemical reaction and suction. Br J Chem Eng. 2013;30:187–95.

    Article  CAS  Google Scholar 

  29. Patil PM, Pop I. Effects of surface mass transfer on unsteady mixed convection flow over a vertical cone with chemical reaction. Heat Mass Transf. 2011;47:1453–64.

    Article  CAS  Google Scholar 

  30. Radbill RJ, McCue AG. Quasilinearization and non-linear problems in fluid and orbital mechanics. New York: Elsevier Publishing Co.; 1970.

    Google Scholar 

  31. Patil PM, Latha DN, Roy S, Momoniat E. Double diffusive mixed convection flow from a vertical exponentially stretching surface in presence of the viscous dissipation. Int J Heat Mass Transf. 2017;112:758–66.

    Article  CAS  Google Scholar 

  32. Patil PM, Shashikant A, Roy S, Momoniat E. Unsteady mixed convection over an exponentially decreasing external flow velocity. Int J Heat Mass Transf. 2017;111:643–50.

    Article  Google Scholar 

  33. Schlichting H, Gersten K. Boundary layer theory. New York: Springer; 2000.

    Book  Google Scholar 

  34. Varga RS. Matrix iterative analysis. Englewood Cliffs: Prentice-Hall; 2000.

    Book  Google Scholar 

Download references

Acknowledgements

This work is supported by the University Grants Commission (UGC), New Delhi under the Grant No. F. 510/3/DRS-III/2016 dated 29-02-2016 by UGC-SAP-DRS-III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Patil.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The coefficients in Eqs. (14)–(16) are defined as:

$$ J_{1}^{{\text{i}}} = \phi \left\{ {\left( {1 + \xi } \right)\frac{f}{2} + \xi f_{\xi } + \xi \tau \left( {f_{\tau } + \phi^{ - 1} \phi_{\tau } f} \right)} \right\}; $$
$$ J_{2}^{{\text{i}}} = - \xi \phi \left( {2\left( {1 + \tau \phi^{ - 1} \phi_{\tau } } \right)P + P_{\xi } + \tau P_{\tau } } \right) - \xi {\text{Re}}\;\phi^{ - 1} \phi_{\tau } - \xi M^{2} {\text{Re}}; $$
$$ J_{3}^{{\text{i}}} = - \,\,\xi \,\phi \,\,P\,; $$
$$ J_{4}^{{\text{i}}} = - \xi ({\text{Re}} + \phi \tau P); $$
$$ J_{5}^{{\text{i}}} = \xi \phi^{ - 1} \lambda ; $$
$$ J_{6}^{{\text{i}}} = - \xi \phi^{ - 1} \lambda N; $$
$$ J_{7}^{{\text{i}}} = - \xi \phi \left( {P + P_{\xi } + \tau P_{\tau } } \right)P - \xi \tau \phi_{\tau } \left( {P^{2} + \varepsilon^{2} } \right) - \xi \varepsilon \left( {\varepsilon \phi + {\text{Re}}\phi^{ - 1} \phi_{\tau } } \right) - \xi \varepsilon M^{2} {\text{Re}}; $$
$$ K_{1}^{{\text{i}}} = \phi { \Pr }\left\{ {(1 + \xi )\frac{f}{2} + \xi f_{\xi } + \xi \tau \left( {\phi^{ - 1} \phi_{\tau } f + f_{\tau } } \right)} \right\}; $$
$$ K_{2}^{{\text{i}}} = \phi (B^{*} - 2\xi { \Pr }P); $$
$$ K_{3}^{{\text{i}}} = - \xi \phi { \Pr }P; $$
$$ K_{4}^{{\text{i}}} = - \xi { \Pr }({\text{Re}} + \phi \tau P); $$
$$ K_{5}^{{\text{i}}} = - \xi \phi { \Pr }\left[ {2Q + Q_{\xi } + \tau Q_{\tau } + 2\phi M^{2} {\text{ReEc}}\left( {\varepsilon - P} \right)} \right] + A^{*} \phi ; $$
$$ K_{6}^{{\text{i}}} = - \xi \phi { \Pr }\left[ {2Q + Q_{\xi } + \tau Q_{\tau } } \right]P - \xi \phi^{2} M^{2} {\text{RePrEc}}\left( {\varepsilon^{2} - P^{2} } \right); $$
$$ L_{1}^{{\text{i}}} = \phi {\text{Sc}}\left\{ {(1 + \xi )\frac{f}{2} + \xi f_{\xi } + \xi \tau \left( {f_{\tau } + \phi^{ - 1} \phi_{\tau } f} \right)} \right\}; $$
$$ L_{2}^{{\text{i}}} = - \xi {\text{Sc}}\left\{ {e^{(2n - 3)\xi } {\text{Re}}\Delta nR^{n - 1} + 2\phi P} \right\}; $$
$$ L_{3}^{{\text{i}}} = - \xi \phi {\text{Sc}}P; $$
$$ L_{4}^{{\text{i}}} = - \xi Sc\left( {{\text{Re}} + \phi \tau P} \right); $$
$$ L_{5}^{{\text{i}}} = - \xi \phi {\text{Sc}}\left( {2R + R_{\xi } + \tau R_{\tau } } \right); $$
$$ L_{6}^{{\text{i}}} = - \xi \phi {\text{Sc}}\left( {2R + R_{\xi } + \tau R_{\tau } } \right)P + \xi e^{(2n - 3)\xi } {\text{Re}}\Delta {\text{Sc}}\left( {R^{n} - nR^{n - 1} } \right). $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, P.M., Shashikant, A. Diffusion of liquid hydrogen in time-dependent MHD mixed convective flow. J Therm Anal Calorim 141, 1197–1205 (2020). https://doi.org/10.1007/s10973-019-09101-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09101-y

Keywords

Navigation