Skip to main content
Log in

Effect of Bi addition on precipitation and dissolution in Cu–9at% In and Cu–5at% Sb alloys

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The effect of Bi addition on precipitation and dissolution, in Cu–9at% In and Cu–5at% Sb supersaturated solid solutions, has been studied by several complementary techniques. Differential Dilatometry and Differential Scanning Calorimetry permit only the analysis of the δ phase dissolution kinetic in sufficiently aged samples. Delayed spheroidization due to Bi segregation around the precipitated lamellae, observed by Transmission Electron Microscopies in the first alloy, gives a residual interfacial energy leading to accelerated δ phase dissolution with decreased activation energy. Kinetics parameters evolution indicates a progressive δ phase continuous dissolution which makes available a small chemical driving force at high temperatures and leads to an increasing activation energy during dissolution. However, Bi dispersed particles in the second alloy haven’t effect on the dissolution but they cause a contraction above 833 K. Kinetics parameters evolution indicates rapid δ phase dissolution that shifted to high temperatures where an important chemical driving force for solution treatment is available. It leads to almost constant activation energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Hamana D, Bouchear M, Derafa A. Effect of plastic deformation on the formation and dissolution of transition phases in Al-12 wt.%. Mg alloy Mater Chem Phys. 1998;57:99–110.

    Article  CAS  Google Scholar 

  2. Boumerzoug Z, Boudhib L, Chala A. Influence of plastic deformation on occurrence of discontinuous precipitation. J Mater Sci. 2005;40:3199–203.

    Article  CAS  Google Scholar 

  3. Hachouf M, Hamana D. Study of the non-isothermal microstructural evolution of deformed Cu–15 wt.%In and Cu–9 wt.%Sb alloys by means of X-ray diffraction and dilatometry. J Alloys Compd. 2015;622:29–36.

    Article  CAS  Google Scholar 

  4. Kashyap KT. Discontinuous precipitation in Cu base alloys. Bull Matter Sci. 2009;32:413–4.

    Article  CAS  Google Scholar 

  5. Predel B, Gust W. Die Kinetik der feinlamellaren diskontinuierlichen Ausscheidung in übersättigten Mischkristallen des Systems Cu-In. Mater Sci Eng. 1975;17:41–50.

    Article  CAS  Google Scholar 

  6. Mana I, Jha JN, Pabi SK. Kinetics of Discontinuous Precipitation in a Zn-2% at Ag Alloy. Scr Metall Mater. 1993;29:817–22.

    Article  Google Scholar 

  7. Hansen M, Anderko K. Constitution of binary alloys. New York: Mc Graw-Hill; 1958.

    Book  Google Scholar 

  8. Bohm H. On Precipitation Behavior of Binary Cu Alloys and its Influence due to Alloying. Z Metallk. 1961;52:564–71.

    Google Scholar 

  9. Solórzano IG, Gust W. Combined Phenomena of Grain Boundary Migration, Precipitation and Recrystallization in Cu-7.5 at% In. Materials Science Forum. 1992;94:659–64.

    Article  Google Scholar 

  10. Hamana D, Nebti S, Boumerzoug Z, Boutefnouchet A. The similarity between continuous and discontinuous precipitation. Phil Mag. 1993;67:1143–51.

    Article  CAS  Google Scholar 

  11. Predel B, Gust W. Discontinuous precipitation processes in supersaturated Cu-Sb solid solution. Met. Trans. 1975;A6:1237–44.

    Article  Google Scholar 

  12. Balasubrahmanyam VV, Gupta SP. Kinetics of cellular precipitation and discontinuous coarsening of the cellular precipitate in Cu-Sb alloys. Acta Metall. 1989;37:291–301.

    Article  CAS  Google Scholar 

  13. Hamana D, Boumerzoug Z. Discontinuous Precipitation, Coarsening and Dissolution of Phases in Cu-In and Cu-Sb Alloys. A Metallkd. 1994;85:479–86.

    Google Scholar 

  14. Boumerzoug Z, Hamana D. Different sites of discontinuous precipitation and mechanisms of dissolution in Cu-9 wt.% Sb alloy. Mater Chem Phys. 2001;69:10-18.

  15. Das A, Pabi SK, Manna I. Kinetics of the eutectoid transformation in the Cu–In system. J. Mater. Scien. 1999;34:1815–21.

    Article  CAS  Google Scholar 

  16. Gupta SP. Kinetics of discontinuous coarsening of cellular precipitate in a Cu-15 wt% in alloy. Acta Metall. 1986;34:1279–87.

    Article  CAS  Google Scholar 

  17. Predel B, Gust W. Explanations of third element effects upon the growth kinetics of discontinuous precipitation in Cu-In and Cu-Sb alloys. Met Trans A. 1976;7A:1958–60.

    CAS  Google Scholar 

  18. Hamana D, Hachouf M, Boumaza L, Biskri ZE. Precipitation Kinetics and Mechanism in Cu-7 wt% Ag Alloy. Mater Sci Appl. 2011;2:899–910.

    CAS  Google Scholar 

  19. Hamana D, Hachouf M. Precipitation and dissolution–grains growth effects and kinetics during non-isothermal heating of deformed Cu–7 mass% Ag alloy. Therm Anal Calorim. 2016;123:1063–71.

    Article  CAS  Google Scholar 

  20. Massalski DTB, Okamoto H, Subramanian PR, Kacprsak L, editors. Binary Alloy Phase Diagrams, vol. 1472. Metals Park: American Society for Metals; 1990.

    Google Scholar 

  21. Abe E. Atomic-Scale Characterization of Nanostructured Metallic Materials by HAADF/Z-contrast STEM. Mater Trans. 2003;44:2035–41.

    Article  CAS  Google Scholar 

  22. Aveyard R, Rieger B. Tilt series STEM simulation of a 25×25×25 nm semiconductor with characteristic X-ray emission. Ultramicroscopy. 2016;171:96–103.

    Article  CAS  Google Scholar 

  23. Yang WQ, Xu M, Liang JX, Meng Y, Zheng L. Non-equilibrium grain-boundary segregation of Bi in Cu bicrystals. Trans. Nonferrous Met. Soc. China. 2014;24:4038–43.

    Article  CAS  Google Scholar 

  24. Alber U, Mullejans H, Ruhle M. Bi segregation at Cu grain boundary. Acta Metall. 1999;47:4047–60.

    CAS  Google Scholar 

  25. Fournelle RA, Clark JB. The genesis of the cellular precipitation reaction. Met Trans. 1972;3:2757–67.

    Article  CAS  Google Scholar 

  26. Powell BD, Mykura H. The segregation of bismuth to grain boundaries in Cu-bismuth alloys. Acta Metall. 1973;21:1151–6.

    Article  CAS  Google Scholar 

  27. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  28. Akahira T, Sunose T. Joint convention of four electrical institutes. Res Report Chiba Inst Technol. 1971;16:22–31.

    Google Scholar 

  29. Johnson WA, Mehl RF. Reaction kinetics in process of nucleation and growth. Trans. AIME. 1939;135:416–58.

    Google Scholar 

  30. Avrami M. Kinetics of phase change. I general theory. J Chem Phys. 1939;7(12):1103–12.

    Article  CAS  Google Scholar 

  31. Avrami M. Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8(2):212–24.

    Article  CAS  Google Scholar 

  32. Avrami M. Granulation, Phase Change, and Microstructure kinetics of phase change III. J. Chem. Phys. 1941;9(2):177–84.

    Article  CAS  Google Scholar 

  33. Brener EA, Temkin DE. Theory of discontinuous precipitation: Importance of the elastic strain. Acta Mat. 2003;51:797–803.

    Article  CAS  Google Scholar 

  34. Kim YM, Kang DS, Hong SK, Kim YC, Kang CS, Choi SW. Influence of variation in the silicon content on the silicon precipitation in the Al–Si binary system. Therm Anal Calorim. 2017;128:107–13.

    Article  CAS  Google Scholar 

  35. Papon P, Leblond J, Meijer Paul HE. Physique des transitions de phases. Paris: Dunod; 1999.

    Google Scholar 

Download references

Acknowledgements

The authors like to express their sincere thanks to Ellen Baken and Anna Carlsson from TEM Applications Laboratory of NanoPort FEI COMPANY (Netherlands) and Guillaume Brunetti, TEM/FIB Application and Marketing Engineer, JEOL (Europe), for assistance with the TEM and SEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hachouf.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hachouf, M., Hamana, D. Effect of Bi addition on precipitation and dissolution in Cu–9at% In and Cu–5at% Sb alloys. J Therm Anal Calorim 139, 75–87 (2020). https://doi.org/10.1007/s10973-019-08421-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08421-3

Keywords

Navigation