Skip to main content
Log in

Thermal degradation of lignin–phenol–formaldehyde and phenol–formaldehyde resol resins

Structural changes, thermal stability, and kinetics

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Resol resins are used in many industrial applications as adhesives and coatings, but few studies have examined their thermal degradation. In this work, the thermal stability and thermal degradation kinetics of phenol–formaldehyde (PF) and lignin–phenol–formaldehyde (LPF) resol resins were studied using thermogravimetric analysis (TG) in air and nitrogen atmospheres in order to understand the steps of degradation and to improve their stabilities in industrial applications. The thermal stability of samples was estimated by measuring the degradation temperature (T d), which was calculated according to the maximum reaction rate criterion. In addition, the ash content was determined at 800 °C in order to compare the thermal stability of the resol resin samples. The results indicate that 30 wt% ammonium lignin sulfonate (lignin derivative) as filler in the formulation of LPF resin improves the thermal stability in comparison with PF commercial resin. The activation energies of degradation of two resol resins show a difference in dependence on mass loss, which allows these resins to be distinguished. In addition, the structural changes of both resins during thermal degradation were studied by Fourier transform infrared spectroscopy (FTIR), with the results indicating that PF resin collapses at 300 °C whereas the LPF resin collapses at 500 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alonso MV, Oliet M, Rodriguez F, Astarloa G, Echeverria JM. Use of a methylolated softwood ammonium lignosulfonate as partial substitute of phenol in resol resins manufacture. J Appl Polym Sci. 2004;94(2):643–50.

    Article  CAS  Google Scholar 

  2. Benar P, Gonçalves AR, Mandelli D, Schuchardt U. Eucalyptus organosolv lignins: study of the hydroxymethylation and use in resols. Bioresour Technol. 1999;68(1):11–6.

    Article  CAS  Google Scholar 

  3. Olivares M, Aceituno H, Neiman G, Rivera E, Sellers TJ. Lignin-modified phenolic adhesives for bonding radiata pine plywood. For Prod J. 1995;45(1):63–7.

    CAS  Google Scholar 

  4. Cho D, Il Yoon B. Microstructural interpretation of the effect of various matrices on the ablation properties of carbon-fiber-reinforced composites. Compos Sci Technol. 2001;61(2):271–80.

    Article  CAS  Google Scholar 

  5. Mao J, Chang J, Chen Y, Fang D. Review of phenolic foam. Ind Eng Chem Res. 1998;15(3):38–43.

    CAS  Google Scholar 

  6. Mouritz AP. Post-fire flexural properties of fibre-reinforced polyester, epoxy and phenolic composites. J Mater Sci. 2002;37(7):1377–86.

    Article  CAS  Google Scholar 

  7. Tugtepe M, Özgümüş S. Modified phenol-formaldehyde novolac resins: synthesis and thermal oxidative degradation. J Appl Polym Sci. 1990;39(1):83–101.

    Article  CAS  Google Scholar 

  8. Gao J, Xia L, Liu Y. Structure of a boron-containing bisphenol-F formaldehyde resin and kinetics of its thermal degradation. Polym Degrad Stabil. 2004;83(1):71–7.

    Article  CAS  Google Scholar 

  9. Chen Y, Chen Z, Xiao S, Liu H. A novel thermal degradation mechanism of phenol-formaldehyde type resins. Thermochim Acta. 2008;476(1–2):39–43.

    Article  CAS  Google Scholar 

  10. Zárate CN, Aranguren MI, Reboredo MM. Thermal degradation of a phenolic resin, vegetable fibers, and derived composites. J Appl Polym Sci. 2008;107(5):2977–85.

    Article  Google Scholar 

  11. Budrugeac P, Segal E. Application of isoconversional and multivariate non-linear regression methods for evaluation of the degradation mechanism and kinetic parameters of an epoxy resin. Polym Degrad Stabil. 2008;93(6):1073–80.

    Article  CAS  Google Scholar 

  12. Looyeh MRE, Samanta A, Jihan S, McConnachie J. Modelling of reinforced polymer composites subject to thermo-mechanical loading. Int J Numer Meth Eng. 2005;63(6):898–925.

    Article  Google Scholar 

  13. Núñez-Regueira L, Villanueva M, Fraga-Rivas I. Activation energies for the thermodegradation process of an epoxy-diamine system. J Therm Anal Calorim. 2006;83(3):727–33.

    Article  Google Scholar 

  14. Zhang Z, Gu A, Liang G, Ren P, Xie J, Wang X. Thermo-oxygen degradation mechanisms of POSS/epoxy nanocomposites. Polym Degrad Stabil. 2007;92(11):1986–93.

    Article  CAS  Google Scholar 

  15. Alonso MV, Oliet M, Garcia J, Rodriguez F, Echeverria J. Transformation of dynamic DSC results into isothermal data for the curing kinetics study of the resol resins. J Therm Anal Calorim. 2006;86(3):797–802.

    Article  CAS  Google Scholar 

  16. Alonso MV, Oliet M, Garcia J, Rodriguez F, Echeverria J. Gelation and isoconversional kinetic analysis of lignin-phenol-formaldehyde resol resins cure. Chem Eng J. 2006;122(3):159–66.

    Article  CAS  Google Scholar 

  17. Alonso MV, Oliet M, Pérez JM, Rodríguez F, Echeverría J. Determination of curing kinetic parameters of lignin-phenol-formaldehyde resol resins by several dynamic differential scanning calorimetry methods. Thermochim Acta. 2004;419(1–2):161–7.

    Article  CAS  Google Scholar 

  18. Kandare E, Kandola BK, Staggs JEJ. Global kinetics of thermal degradation of flame-retarded epoxy resin formulations. Polym Degrad Stabil. 2007;92(10):1778–87.

    Article  CAS  Google Scholar 

  19. Morancho JM, Salla JM, Ramis X, Cadenato A. Comparative study of the degradation kinetics of three powder thermoset coatings. Thermochim Acta. 2004;419(1–2):181–7.

    Article  CAS  Google Scholar 

  20. Rao M, Alwan S, Scariah K, Sastri K. Thermochemical characterization of phenolic resins. J Therm Anal Calorim. 1997;49(1):261–8.

    Article  CAS  Google Scholar 

  21. Roczniak K, Biernacka T, Skarżyński M. Some properties and chemical structure of phenolic resins and their derivatives. J Appl Polym Sci. 1983;28(2):531–42.

    Article  CAS  Google Scholar 

  22. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res NBS A Phys Chem. 1966;70(6):487–523.

    CAS  Google Scholar 

  23. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6.

    Article  CAS  Google Scholar 

  24. Vyazovkin S. Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature. J Comput Chem. 1997;18(3):393–402.

    Article  CAS  Google Scholar 

  25. Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22(2):178–83.

    Article  CAS  Google Scholar 

  26. He G, Riedl B. Curing kinetics of phenol formaldehyde resin and wood-resin interactions in the presence of wood substrates. Wood Sci Technol. 2004;38(1):69–81.

    Article  CAS  Google Scholar 

  27. Lee YK, Kim DJ, Kim HJ, Hwang TS, Rafailovich M, Sokolov J. Activation energy and curing behavior of resol- and novolac-type phenolic resins by differential scanning calorimetry and thermogravimetric analysis. J Appl Polym Sci. 2003;89(10):2589–96.

    Article  CAS  Google Scholar 

  28. Siimer K, Kaljuvee T, Christjanson P, Pehk T, Saks I. Effect of alkylresorcinols on curing behaviour of phenol-formaldehyde resol resin. J Therm Anal Calorim. 2008;91(2):365–73.

    Article  CAS  Google Scholar 

  29. Khan M, Ashraf S. Studies on thermal characterization of lignin. J Therm Anal Calorim. 2007;89(3):993–1000.

    Article  CAS  Google Scholar 

  30. Mathur VK. Characterization of spent sulphite liquor-phenol condensation. Thesis, University of Washington, SD121 TH30187 (1982).

  31. Singare PU, Lokhande RS, Madyal RS. Thermal degradation studies of polystyrenesulfonic and polyacrylic carboxylic cationites. Russ J Gen Chem. 2010;80(3):527–32.

    Article  CAS  Google Scholar 

  32. Vyazovkin S, Wight CA. Kinetics in solids. Annu Rev Phys Chem. 1997;48:125–49.

    Article  CAS  Google Scholar 

  33. Achilias DS, Karabela MM, Sideridou ID. Thermal degradation of light-cured dimethacrylate resins: Part I. Isoconversional kinetic analysis. Thermochim Acta. 2008;472(1–2):74–83.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the “Ministerio de Ciencia e Innovación” (project CTQ2007-64071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Alonso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alonso, M.V., Oliet, M., Domínguez, J.C. et al. Thermal degradation of lignin–phenol–formaldehyde and phenol–formaldehyde resol resins. J Therm Anal Calorim 105, 349–356 (2011). https://doi.org/10.1007/s10973-011-1405-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1405-0

Keywords

Navigation