Skip to main content
Log in

Thermodynamic investigation of room temperature ionic liquid

Heat capacity and thermodynamic functions of BPBF4

  • Regular Papers
  • Thermodynamics
  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The molar heat capacities of the room temperature ionic liquid 1-butylpyridinium tetrafluoroborate (BPBF4) were measured by an adiabatic calorimeter in temperature range from 80 to 390 K. The dependence of the molar heat capacity on temperature is given as a function of the reduced temperature X by polynomial equations, C p,m [J K−1 mol−1]=181.43+51.297X −4.7816X 2−1.9734X 3+8.1048X 4+11.108X 5 [X=(T−135)/55] for the solid phase (80–190 K), C p,m [J K−1 mol−1]= 349.96+25.106X+9.1320X 2+19.368X 3+2.23X 4−8.8201X 5 [X=(T−225)/27] for the glass state (198–252 K), and C p,m[J K−1 mol−1]= 402.40+21.982X−3.0304X 2+3.6514X 3+3.4585X 4 [X=(T−338)/52] for the liquid phase (286–390 K), respectively. According to the polynomial equations and thermodynamic relationship, the values of thermodynamic function of the BPBF4 relative to 298.15 K were calculated in temperature range from 80 to 390 K with an interval of 5 K. The glass transition of BPBF4 was observed at 194.09 K, the enthalpy and entropy of the glass transition were determined to be ΔH g=2.157 kJ mol−1 and ΔS g=11.12 J K−1 mol−1, respectively. The result showed that the melting point of the BPBF4 is 279.79 K, the enthalpy and entropy of phase transition were calculated to be ΔH m = 8.453 kJ mol−1 and ΔS m=30.21 J K−1 mol−1. Using oxygen-bomb combustion calorimeter, the molar enthalpy of combustion of BPBF4 was determined to be Δc H 0m = −5451±3 kJ mol−1. The standard molar enthalpy of formation of BPBF4 was evaluated to be Δf H 0m = −1356.3±0.8 kJ mol−1 at T=298.150±0.001 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. M. Gordon, J. D. Holbrey, A. R. Kennedy and K. R. Seddon, J. Mater. Chem., 8 (1998) 2627.

    Article  CAS  Google Scholar 

  2. J. Fuller, R. T. Cartin and R. A. Osteryoung, J. Electrochem. Soc., 144 (1997) 3881.

    Article  CAS  Google Scholar 

  3. J. Sun, M. Forsyth and D. R. Macfarlane, J. Phys. Chem. B, 102 (1998) 8858.

    Article  CAS  Google Scholar 

  4. T. Welton, Chem. Rev., 99 (1999) 2071.

    Article  CAS  Google Scholar 

  5. A. J. Carmichael and K. R. Seddon, J. Phys. Org. Chem., 13 (2000) 591.

    Article  CAS  Google Scholar 

  6. C. E. Song, W. H. Shim, E. J. Roh, S. G. Lee and J. H. Choi, Chem. Commun., 12 (2001) 1122.

    Article  CAS  Google Scholar 

  7. P. Wasserscheid, C. M. Gordon, C. Hilgers, M. J. Muldoon and I. R. Dunkin, Chem. Commun., 13 (2001) 1186.

    Article  Google Scholar 

  8. C. Wheeler, K. N. West, C. L. Liotta and C. A. Eckert, Chem. Commun., 10 (2001) 887.

    Article  Google Scholar 

  9. F. Endres, Phys. Chem. Chem. Phys., 3 (2001) 3165.

    Article  CAS  Google Scholar 

  10. V. Najdanovic-Visak, J. M. S. S. Esperanca and L. P. N. Rebelo, Phys. Chem. Chem. Phys., 4 (2002) 1701.

    Article  CAS  Google Scholar 

  11. P. Vasserscheid and W. Keim, Angew. Chem. Int. Ed., 39 (2000) 3772.

    Article  Google Scholar 

  12. J. D. Holbrey and K. R. Seddon, Clean Products Processes, 1 (1999) 223.

    Google Scholar 

  13. D. Appleby, C. L. Hussey, K. R. Seddon and J. E. Turp, Nature, 323 (1986) 614.

    Article  CAS  Google Scholar 

  14. J. L. Anthony, F. J. Maginn and Brennecke, J. Phys. Chem. B, 105 (2001) 10942.

    Article  CAS  Google Scholar 

  15. J. Z. Yang, P. Tian, L. L. He and W. G. Xu, Fluid Phase Equilib., 204 (2003) 295.

    Article  CAS  Google Scholar 

  16. J. Z. Yang, W. G. Xu and Q. G. Zhang, J. Chem. Thermodyn., 35 (2003) 1855.

    Article  CAS  Google Scholar 

  17. J. Z. Yang, P. Tian and W. G. Xu, Thermochim. Acta, 412 (2004) 1.

    Article  CAS  Google Scholar 

  18. J. D. Holbrey, W. M. Reichert and R. P. Swatloski, Green Chem., 4 (2002) 407.

    Article  CAS  Google Scholar 

  19. J. Fuller, R. A. Osteryoung and R. T. Carlin, J. Electrochem. Soc., 142 (1995) 3632.

    Article  CAS  Google Scholar 

  20. J. Fuller, R. T. Carlin and R. A. Osteryoung, J. Electrochem. Soc., 144 (1997) 3881.

    Article  CAS  Google Scholar 

  21. E. N. Jacobsen, I. Marko and K. B. Sharpless, J. Am. Chem. Soc., 110 (1988) 1986.

    Article  Google Scholar 

  22. P. A. Z. Suarez, J. E. L. Dullius, S. Einloft, R. F. D. Souza and J. Dupnot, Polyhedron, 157 (1996) 1217.

    Article  Google Scholar 

  23. P. J. Dyson, M. C. Grossel, N. Srinivasan, T. Vine, T. Welton, D. J. Williams, A. J. P. White and T. Zigras, DALTON, 19 (1997) 3465.

    Google Scholar 

  24. A. Noda and M. Watanabe, Electrochim. Acta, 45 (2000) 1265.

    Article  CAS  Google Scholar 

  25. J. Robinson and R. A. Osteryoung, J. Am. Chem. Soc., 102 (1979) 323.

    Article  Google Scholar 

  26. W. D. Bancroft and S. S. Hubard, J. Am. Chem. Soc., 64 (1942) 347.

    Article  CAS  Google Scholar 

  27. Z. C. Tan, G. Y. Sun, Y. Sun, A. X. Yin, W. B. Wang, J. C. Ye and L. X. Zhou, J. Thermal Anal., 45 (1995) 59.

    Article  CAS  Google Scholar 

  28. D. G. Archer, J. Phys. Chem. Ref. Data, 22 (1993) 1441.

    Article  CAS  Google Scholar 

  29. R. L. David, CRC Handbook of Chemistry and Physics, 80th Ed., CRC Press, Boca Raton 1999, Chapter 6-6.

    Google Scholar 

  30. K. K. Kelley, J. Am. Chem. Soc., 51 (1929) 779.

    Article  CAS  Google Scholar 

  31. H. M. Huffman, G. S. Parks and A. C. Daniels, J. Am. Chem. Soc., 52 (1930) 1547.

    Article  CAS  Google Scholar 

  32. H. Osamu, S. Hiroshi and S. Syuzo, J. Chem. Thermodyn., 9 (1977) 1133.

    Google Scholar 

  33. Y. Y. Di, Z. C. Tan, X. H. Sun, M. H. Wang, F. Xu, Y. F. Liu, L. X. Sun and H. T. Zhang, J. Chem. Thermodyn., 36 (2004) 79.

    Article  CAS  Google Scholar 

  34. S. X. Wang, Z. C. Tan, Y. Y. Di, F. Xu, M. H. Wang, L. X. Sun and T. Zhang, J. Therm. Anal. Cal., 76 (2004) 335.

    Article  CAS  Google Scholar 

  35. F. Xu, L. X. Sun, Z. C. Tan, J. G. Liang, Y. Y. Di, Q. F. Tian and T. Zhang, J. Therm. Anal. Cal., 76 (2004) 481.

    Article  CAS  Google Scholar 

  36. Z. D. Nan and Z. C. Tan, J. Therm. Anal. Cal., 76 (2004) 955.

    Article  CAS  Google Scholar 

  37. B. Xue, J. Y. Wang, Z. C. Tan, S. W. Lu and S. H. Meng, J. Therm. Anal. Cal., 76 (2004) 965.

    Article  CAS  Google Scholar 

  38. S. Tomitaka, M. Mizukami, F. Paladi and M. Oguni, J. Therm. Anal. Cal., 81 (2005) 637.

    Article  CAS  Google Scholar 

  39. Z. C. Tan, B. Xue, S. W. Lu, S. H. Meng, X. H. Yuan and Y. J. Song, J. Therm. Anal. Cal., 63 (2001) 297.

    Article  CAS  Google Scholar 

  40. H. A. Skinner, Experimental Thermochemistry, 2 (1962) 19.

    Google Scholar 

  41. J. D. Cox, D. D. Wagman and V. A. Medvedev, CODATA Key Values for Thermodynamics. Hemisphere, New York 1989.

    Google Scholar 

  42. J. D. Cox, J. Chem. Thermodyn., 10 (1978) 903.

    Article  CAS  Google Scholar 

  43. M. W. Chase Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph, 9 (1998) 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. X. Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z.H., Sun, L.X., Tan, Z.C. et al. Thermodynamic investigation of room temperature ionic liquid. J Therm Anal Calorim 89, 289–294 (2007). https://doi.org/10.1007/s10973-006-7511-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-006-7511-8

Keywords

Navigation