Skip to main content

Advertisement

Log in

Preparation of diatomite–TiO2 composite for photodegradation of bisphenol-A in water

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

To enhance the photodegradation performance of pure titanium dioxide (TiO2), diatomite was used as a porous carrier to immobilize TiO2 powders using calcination method. The photodegradation of bisphenol-A (BPA; 4,4′-isopropylidenediphenol), which has been listed as one of endocrine disrupting chemicals, was carried out in a batch suspension reactor using pure TiO2 powders and diatomite–TiO2 composites, respectively. Under the controlled conditions, the photocatalytic efficiencies of the BPA degradation by the diatomite–TiO2 composites can be found to be higher than those by pure TiO2 powders. This result should be attributable to the accessibility of the BPA molecules to the surface of TiO2 particle in the modified photocatalysts, showing that the enrichment of the organic solute enhanced the rate of photodegradation on the diatomite–TiO2 composite. However, the photodegradation efficiency was not dependent on the pore properties of these TiO2 photocatalysts. The experimental results further indicated that the photodegradation kinetics for the destruction of BPA in water followed the first-order model well. The apparent first-order reaction constants (k obs), thus obtained from the fittings of the model, were in line with the destruction-removal efficiencies of BPA in all the photocatalytic experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gultekin I, Ince NH (2007) J Environ Manage 85:816

    Article  PubMed  CAS  Google Scholar 

  2. Halmann MM (1996) Photodegradation of water pollutants. CRC Press, Boca Raton

    Google Scholar 

  3. Mogyorosi K, Farkas A, Dekany I (2002) Environ Sci Technol 36:3618. doi:10.1021/es015843k

    Article  PubMed  CAS  Google Scholar 

  4. Sun Z, Chen Y, Ke Q, Yuan J (2002) J Photochem Photobiol A 149:169. doi:10.1016/S1010-6030(01)00649-9

    Article  CAS  Google Scholar 

  5. Fukahori S, Ichiura H, Kitaoka T, Tanaka H (2003) Appl Catal B 46:453. doi:10.1016/S0926-3373(03)00270-4

    Article  CAS  Google Scholar 

  6. Ooka C, Yoshida H, Horio M, Suzuki K, Hattori T (2003) Appl Catal B 41:313

    Article  CAS  Google Scholar 

  7. Lee JM, Kim MS, Kim BW (2004) Water Res 38:3605. doi:10.1016/j.watres.2004.05.015

    Article  PubMed  CAS  Google Scholar 

  8. Kanki T, Hamasaki S, Sano N, Toyoda A, Hirano K (2005) Chem Eng J 108:155. doi:10.1016/j.cej.2005.01.014

    Article  CAS  Google Scholar 

  9. Otsuka E, Kurumada K, Suzuki A, Matsuzawa S, Takeuchi K (2008) J Sol Gel Sci Technol 46:71

    Article  CAS  Google Scholar 

  10. Chen MY, Ike M, Fujita M (2002) Environ Toxicol 17:80. doi:10.1002/tox.10035

    Article  PubMed  CAS  Google Scholar 

  11. Staples CA, Dorn PB, Klecka GM, O’Block ST, Harris LR (1998) Chemosphere 36:2149. doi:10.1016/S0045-6535(97)10133-3

    Article  PubMed  CAS  Google Scholar 

  12. Calafat AM, Ye X, Wong LY, Reidy JA, Needham LL (2008) Environ Health Perspect 116:39

    Article  PubMed  CAS  Google Scholar 

  13. Tsai WT (2006) J Environ Sci Health C 24:225

    CAS  Google Scholar 

  14. Kang JH, Aasi D, Katayama Y (2007) Crit Rev Toxicol 37:607. doi:10.1080/10408440701493103

    Article  PubMed  CAS  Google Scholar 

  15. Ivanov SE, Belyakov AV (2007) Glass Ceram 65:48. doi:10.1007/s10717-008-9005-6

    Article  CAS  Google Scholar 

  16. Tsai WT, Hsien KJ, Lai CW (2004) Ind Eng Chem Res 43:7513. doi:10.1021/ie0400651

    Article  CAS  Google Scholar 

  17. Tsai WT, Hsien KJ, Chang YM, Lo CC (2005) Bioresour Technol 96:657. doi:10.1016/j.biortech.2004.06.023

    Article  PubMed  CAS  Google Scholar 

  18. Tsai WT, Hsien KJ, Lai CW (2006) J Colloid Interface Sci 297:749. doi:10.1016/j.jcis.2005.10.058

    Article  PubMed  CAS  Google Scholar 

  19. Arana J, Herrera Melian JA, Dona Rodriguez JM, Gonzalez Diaz O, Viera V, Perez Pena J, Marrero Sosa PM, Espino Jimenez V (2002) Catal Today 76:279. doi:10.1016/S0920-5861(02)00226-2

    Article  CAS  Google Scholar 

  20. Smith JM (1981) Chemical engineering kinetics, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  21. Rengaraj S, Li XZ (2006) Int J Environ Pollut 27:20

    CAS  Google Scholar 

  22. Turchi CS, Ollis DF (1988) J Phys Chem 92:685. doi:10.1021/j100334a070

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by NSC (National Science Council, Taiwan) under contract number 95-2221-E-020-041.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Tien Tsai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsien, KJ., Tsai, WT. & Su, TY. Preparation of diatomite–TiO2 composite for photodegradation of bisphenol-A in water. J Sol-Gel Sci Technol 51, 63–69 (2009). https://doi.org/10.1007/s10971-009-1921-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-009-1921-6

Keywords

Navigation