Skip to main content
Log in

Polymerization of ε-caprolactone with degraded PET for its functionalization

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Poly(caprolactone) (PCL) was synthesized from the polymerization of ε-caprolactone (CL) with degraded poly(ethylene terephthalate) (PET) for its functionalization using heptamolybdate of ammonium and tin(II) 2-ethylhexanoate, as catalyst and initiator, respectively. Polymerization of CL with bis(2-hydroxyethyl) terephthalate (BHET) was carried out to make a comparison. From the analysis by FTIR, the functional groups of polycaprolactone and degraded PET were identified by FTIR. The chemical shift at 165.59 ppm obtained by NMR corresponded to the chemical bond between the carbonyl of the PCL bound to the -CH2CO2-C10H8O4 of the degraded PET. The number average molar mass of polymer obtained was determined and its chemical structure was proposed. Crystallinity and the temperatures of melting and degradation depended of the mass of degraded PET used in the synthesis. Based on the proposed chemical structure, the synthesized polymer could be used in the preparation of other polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Maris J, Bourdon S, Brossard J, Cauret L, Fontaine L, Montembault V (2018) Mechanical recycling: Compatibilization of mixed thermoplastic wastes. Polym Degrad Stab 147:245–266

    Article  CAS  Google Scholar 

  2. Singh N, Hui D, Singh R, Ahuja IPS, Feo L, Fraternali F (2017) Recycling of plastic solid waste: a state of art review and future applications. Composites Part B 115:409–422

    Article  CAS  Google Scholar 

  3. Rahimi A, García JM (2017) Chemical recycling of waste plastics for new materials production. Nat Rev Chem:1–11

  4. Wojciech BJ (2015) Thermal utilization (treatment) of plastic waste. Energy, vol 90, pp 1468–1477

    Google Scholar 

  5. Al-Sabagh AM, Yehia FZ, Eshaq G, Rabie AM, ElMetwally AE (2016) Greener routes for recycling of polyethylene terephthalate. Egypt J Pet 25:53–64

    Article  Google Scholar 

  6. Zhou X, Wang C, Fang C, Yu R, Li Y, Lei W (2019) Structure and thermal properties of various alcoholysis products from waste poly(ethylene terephthalate). Waste Manag 85:164–174

    Article  CAS  Google Scholar 

  7. Tamio E, Lakshmi R, Hiroaki N, Satoru K, Yoshinobu N, Kazuhiro E (2017) Composite engineering–direct bonding of plastic PET films by plasma irradiation. Procedia Eng 171:88–103

    Article  Google Scholar 

  8. Ren M, Zhang Z, Wu S, Wei J, Xiao C (2006) Uniaxial orientation and crystallization behavior of amorphous poly(ethylene terephthalate) fibers. J Polym Res 13:9–15

    Article  CAS  Google Scholar 

  9. Awaja F, Pavel D (2005) Recycling of PET. Eur Polym J 41:1453–1477

    Article  CAS  Google Scholar 

  10. Abdelaal MY, Sobahi TR, Makki MS (2008) Chemical degradation of poly(ethylene terephthalate). Int J Polym Mater 57:73–80

    Article  CAS  Google Scholar 

  11. Sharma V, Shrivastava P, Agarwal D (2015) Degradation of PET-bottles to monohydroxyethyl terephthalate(MHT) using ethylene glycol and hydrotalcite. J Polym Res 22:241

    Article  Google Scholar 

  12. Mohammadi SR, Khonakdar HA, Ehsani M, Jafari SH, Wagenknecht U, Kretzschmar B (2011) Investigation of thermal behavior and decomposition kinetic of PET/PEN blends and their clay containing nanocomposites. J Polym Res 18:1765–1775

    Article  CAS  Google Scholar 

  13. Paszun D, Spychaj T (1997) Chemical recycling of poly(ethylene terephthalate). Ind Eng Chem Res 36:1373–1383

    Article  CAS  Google Scholar 

  14. Hsiao KJ, Jen ZF, Yang JC, Chen LT (2002) Physical properties of R-PET/CD-PET polyblended hollow filaments and their kinetics of alkaline hydrolysis. J Polym Res 9:53–59

    Article  CAS  Google Scholar 

  15. Yoshioka T, Motoki T, Okuwaki A (2001) Kinetics of Hydrolsis of PET powder in nitric acid by a modified shrinking Core model. Ind Eng Chem Res 40:75–79

    Article  CAS  Google Scholar 

  16. Espinoza GK, Navarro R, Ramírez-Hernández A, Marcos-Fernández A (2017) New routes to difunctional macroglycols using ethylene carbonate: reaction with bis-(2-hydroxyethyl) terephthalate and degradation of poly(ethylene terephthalate). Polym Degrad Stab 144:195–206

    Article  Google Scholar 

  17. Makino Y, Hirata T (1997) Modified atmosphere packaging of fresh produce with a biodegradable laminate of chitosan-cellulose and polycaprolactone. Postharvest Biol Technol 10:247–254

    Article  CAS  Google Scholar 

  18. Stanley N, Bucataru G, Miao Y, Favrelle A, Bria M, Stoffelbach F, Woisel P, Zinck P (2014) Brönsted acids catalyzed polymerization of ε-caprolactone in water, a mild and straightforward route to poly(ε-caprolactone)-graft-water-soluble polysaccharides. J Polym Sci Chem 52:2139–2145

    Article  CAS  Google Scholar 

  19. Jikei M, Takeyama Y, Yamadoi Y, Shinbo N, Matsumoto K, Motokawa M, Ishibashi K, Yamamoto F (2015) Synthesis and properties of poly(L-lactide)-poly(ε-caprolactone) multiblock copolymers by the self-polycondensation of diblockmacromonomers. Polym J 47:657–665

    Article  CAS  Google Scholar 

  20. Sisson AL, Duygu E, Andreas L (2013) The contemporary role of ε-caprolactone chemistry to create advanced polymer architectures. Polym 54:4333–4350

    Article  CAS  Google Scholar 

  21. Ting-Yu S, Yang J, Jui-Hsiang C (2012) Synthesis, characterization and evaluation of segmented polycaprolactone for development of dura substitute. Procedia Eng 36:144–149

    Article  Google Scholar 

  22. Báez JE, Martínez-Rosales M, Martínez-Richa A (2003) Ring-opening polymerization of lactones catalyzed by decamolybdate anion. Polym 44:6767–6772

    Article  Google Scholar 

  23. Penczek S, Duda A, Kowalski A, Libiszowski J, Majerska K, Biela T (2000) On the mechanism of polymerization of cyclic esters induced by tin(II) octoate. Macromol Symp 157:61–70

    Article  CAS  Google Scholar 

  24. Storey RF, Taylor AE (1998) Effect of stannous octoate on the composition, molecular weight, and molecular weight distribution of ethylene glycol-initiated poly(ε-caprolactone). J Macromol Sci Part A 35:723–750

    Article  Google Scholar 

  25. Kiersnowski A, Budde H, Kressler J, Piglowski J (2004) Synthesis and structure of poly(ε-caprolactone)/synthetic montmorillonite nano-intercalates. Eur Polym J 40:2591–2598

    Article  CAS  Google Scholar 

  26. Asuman C, Nurufe K, Ramazan O, Ali EM, Faruk Y (2009) Synthesis, characterization and thermal properties of a novel star polymer consisting of poly(ε-caprolactone) arms emanating from an octa-functional porphyrazine core. React Funct Polym 69:705–713

    Article  Google Scholar 

  27. Báez JE, Ramírez-Hernández A, Marcos-Fernández Á (2010) Synthesis, characterization, and degradation of poly(ethylene-b-ε-caprolactone) diblock copolymer. Polym Adv Technol 21:55–64

    Google Scholar 

  28. Ramírez-Hernández A, Martínez-Richa A (2010) Ring opening polymerization of ε-Caprolactone initiated by Decamolybdate anion: determination of kinetic and thermodynamic parameters by DSC and 1H-NMR. J Appl Polym Sci 115:2288–2295

    Article  Google Scholar 

  29. He Y, Inoue Y (2000) Novel FTIR method for determining the crystallinity of poly(ε-caprolactone). Polym Int 49:623–626

    Article  CAS  Google Scholar 

  30. Gómez-Lizárraga K, Flores-Morales C, Del Prado-Audelo ML, Álvarez-Pérez MA, Piña-Barba MC, Escobedo C (2017) Polycaprolactone-and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: a comparative study. Mater Sci Eng C 79:326–335

    Article  Google Scholar 

  31. Corden TJ, Jones IA, Rudd CD, Christian P, Downes S, McDougall KE (2000) Physical and biocompatibility properties of poly-ε-caprolactone produced using in situ polymerisation: a novel manufacturing technique for long-fibre composite materials. Biomater 21:713–724

    Article  CAS  Google Scholar 

  32. Elzein T, Nasser-Eddine M, Delaite C, Bistac S, Dumas P (2004) FTIR study of polycaprolactone chain organization at interfaces. J Colloid Interface Sci 273:381–387

    Article  CAS  Google Scholar 

  33. Spěváček J, Brus J, Divers T, Grohens Y (2007) Solid-state NMR study of biodegradable starch/polycaprolactone blends. Eur Polym J 43:1866–1875

    Article  Google Scholar 

  34. Yanrong G, Tao D, Pengtao F, Qing Z, Xingmei L, Suojiang Z (2015) Fast and effective glycolysis of poly(ethylene terephthalate) catalyzed by polyoxometalate. Polym Degrad Stab 117:30–36

    Article  Google Scholar 

  35. Kong Y, Hay JN (2003) The enthalpy of fusion and degree of crystallinity of polymers as measured by DSC. Eur Polym J 39:1721–1727

    Article  CAS  Google Scholar 

  36. Wang Y, Rodriguez-Perez MA, Reis RL, Mano JF Thermal and thermomechanical behaviour of Polycaprolactone and starch/Polycaprolactone blends for biomedical applications. Macromol Mater Eng 38, 290:792–801

  37. Ramírez-Hernández A, Mata-Mata JL, Aparicio-Saguilán A, González-García G, Hernández-Mendoza H, Gutiérrez-Fuentes A, Báez-García E (2016) The effect of ethylene glycol on starch-g-PCL graft copolymer synthesis. Starch/starke 68:1148–1157

    Article  Google Scholar 

  38. Ramírez-Hernández A, Aparicio-Saguilán A, Mata-Mata JL, González-García G, Hernández-Mendoza H, Gutiérrez-Fuentes A, Báez-García E (2017) Chemical modification of banana starch by the in situ polymerization of ϵ-caprolactone in one step. Starch / Stärke 69:1600197

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Universidad del Papaloapan and Martha Rocio Valencia Estacio, for their assistance on this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurelio Ramírez-Hernández.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 510 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espinoza-García, K., Marcos-Fernández, A., Navarro, R. et al. Polymerization of ε-caprolactone with degraded PET for its functionalization. J Polym Res 26, 180 (2019). https://doi.org/10.1007/s10965-019-1821-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1821-6

Keywords

Navigation