Skip to main content
Log in

Influence of dissipative heating on active damping of forced resonance vibrations of a flexible viscoelastic cylindrical panel by piezoelectric actuators

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

The problem of the influence of the temperature of dissipative heating on active damping of forced resonance vibrations of flexible simply supported viscoelastic cylindrical panels by piezoelectric actuators is considered. For the solution of the nonlinear problem, we use the analytic Bubnov–Galerkin method and the numerical finite-element methods together with the method of harmonic balance. In both cases, the problem is reduced to nonlinear algebraic equations that are solved numerically. Equating the maximum temperature of dissipative heating to the Curie temperature, we determine the critical value of the parameter of mechanical load after achievement of which control over panel vibrations is unrealizable due to the loss of piezoeffect by the active material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Ambartsumyan, General Theory of Anisotropic Shells [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  2. N. N. Bogolyubov and Yu. A. Mitropol’skii, Asymptotic Methods in the Theory of Nonlinear Oscillations [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  3. A. S. Vol’mir, Nonlinear Dynamics of Plates and Shells [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  4. Ya. M. Grigorenko and N. N. Kryukov, Numerical Solution of Problems of Statics of Flexible Layered Shells with Varying Parameters [in Russian], Naukova Dumka, Kiev (1988).

  5. V. T. Grinchenko, A. F. Ulitko, and N. A. Shul’ga, Electroelasticity. Mechanics of Coupled Fields in Structural Elements [in Russian], Vol. 5, Naukova Dumka, Kiev (1989).

  6. A. A. Il’yushin and B. E. Pobedrya, Foundations of the Mathematical Theory of Thermoviscoelasticity [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  7. V. G. Karnaukhov, “Thermal fracture of polymer structural elements under monoharmonic deformation,” Prikl. Mekh., 40, No. 6, 30–70 (2004).

    MathSciNet  MATH  Google Scholar 

  8. V. G. Karnaukhov and I. F. Kirichok, Coupled Problems of the Theory of Viscoelastic Plates and Shells [in Russian], Naukova Dumka, Kiev (1986).

    Google Scholar 

  9. V. G. Karnaukhov and I. F. Kirichok, Electrothermoviscoelasticity. Mechanics of Coupled Fields in Structural Elements [in Russian], Vol. 4, Naukova Dumka, Kiev (1988).

    Google Scholar 

  10. V. G. Karnaukhov, A. V. Kozlov, and E. V. Pyatetskaya, “Damping of vibrations of viscoelastic plates with the use of distributed piezoelectric inclusions,” Akust. Visn., 5, No. 4, 15–32 (2002).

    Google Scholar 

  11. V. G. Karnaukhov and V. V. Mikhailenko, Nonlinear Thermomechanics of Piezoelectric Inelastic Bodies under Monoharmonic Loading [in Russian], Zhytomir Engineering-Technological University, Zhytomir (2005).

    Google Scholar 

  12. V. Karnaukhov, V. Kozlov, and T. Karnaukhova, “Simulation of forced resonance vibrations and dissipative heating of flexible viscoelastic plates with distributed actuators,” Fiz.-Mat. Model. Inform. Tekhnol., Issue 8, 48–68 (2008).

  13. V. I. Kozlov and T. V. Karnaukhova, and M. V. Peresun’ko, “Numerical simulation of active damping of forced thermomechanical resonance vibrations of viscoelastic shells of revolution with the use of piezoelectric inclusions,” Mat. Met. Fiz.-Mekh. Polya, 52, No. 3, 116–126 (2009).

    MATH  Google Scholar 

  14. V. D. Kubenko and P. S. Koval’chuk, Nonlinear Vibrations of Cylindrical Shells [in Russian], Vyshcha Shkola, Kiev (1989).

    Google Scholar 

  15. A. N. Guz’ (editor), Methods of Shell Analysis [in Russian], Vols. 1–5, Naukova Dumka, Kiev (1980–1982).

  16. A. N. Guz’ (editor), Mechanics of Composite Materials and Structural Elements [in Russian], Vols. 1–3, Naukova Dumka, Kiev (1982–1983).

  17. Yu. N. Rabotnov, Elements of Hereditary Mechanics of Solids [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  18. U. Gabbert and H. S. Tzou, Smart Structures and Structronic Systems, Kluwer, Dordrecht (2001).

    Book  Google Scholar 

  19. S. Gopinathan, V. V. Varadan, and V. K. Varadan, “A review and critique of theories for piezoelectric laminates,” Smart Mater. Struct., 9, 24–48 (2000).

    Article  Google Scholar 

  20. H. R. Hamidzaden and R. N. Jazar, Vibrations of Thick Cylindrical Structures, Springer, New York (2010).

    Book  Google Scholar 

  21. V. G. Karnaukhov, “Thermomechanics of coupled fields in passive and piezoactive inelastic bodies under harmonic deformations,” J. Therm. Stresses, 28, No. 6-7, 783–815 (2005).

    Article  Google Scholar 

  22. B. Lazan, Damping of Materials and Members in Structural Mechanics, Pergamon, Oxford (1968).

    Google Scholar 

  23. X. Lu and S. V. Hanagud, Extended irreversible thermodynamics modeling for self-heating and dissipation in piezoelectric ceramics,” IEEE Trans. Ultrasonics, Ferroelectrics, Frequency Control, 31, No. 12, 1582–1592 (2004).

    Google Scholar 

  24. L. D. Mauk and C. S. Lynch, Thermo-electro-mechanical behavior of ferroelectric materials. Part I: Computational micromechanical model versus experimental results,” J. Intelligent Mater. Systems Struct., 14, 587–602 (2003).

    Article  Google Scholar 

  25. S. S. Rao and M. Sunar, Piezoelectricity and its use in disturbance sensing and control of structure: A survey,” Appl. Mech. Rev., 47, No. 44, 113–123 (1994).

    Article  Google Scholar 

  26. J. Tani, T. Takagi, and J. Qiu, “Intelligent material systems: Applications of functional materials,” Appl. Mech. Rev., 51, No. 8, 505–521 (1998).

    Article  Google Scholar 

  27. H. S. Tzou, Piezoelectric Shells (Distributed Sensing and Control of Continua), Kluwer, Dordrecht (1993).

    Book  Google Scholar 

  28. H. S. Tzou and L. A. Bergman, Dynamics and Control of Distributed Systems, Cambridge University, Cambridge (1998).

    Book  Google Scholar 

  29. L. M. Weiland and C. S. Lynch, “Thermo-electro-mechanical behavior of ferroelectric materials. Part II: Introduction of rate and self-heating effects,” J. Intell. Mater. Syst. Struct., 14, 602–621 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Matematychni Metody ta Fizyko-Mekhanichni Polya, Vol. 54, No. 1, pp. 175–188, January–March, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karnaukhov, V.G., Kozlov, V.I. & Karnaukhova, T.V. Influence of dissipative heating on active damping of forced resonance vibrations of a flexible viscoelastic cylindrical panel by piezoelectric actuators. J Math Sci 183, 205–221 (2012). https://doi.org/10.1007/s10958-012-0807-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-012-0807-2

Keywords

Navigation