Skip to main content
Log in

Continuous Piecewise Linear Delta-Approximations for Univariate Functions: Computing Minimal Breakpoint Systems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

For univariate functions, we compute optimal breakpoint systems subject to the condition that the piecewise linear approximator, under-, and over-estimator never deviate more than a given \(\delta \)-tolerance from the original function over a given finite interval. The linear approximators, under-, and over-estimators involve shift variables at the breakpoints allowing for the computation of an optimal piecewise linear, continuous approximator, under-, and over-estimator. We develop three non-convex optimization models: two yield the minimal number of breakpoints, and another in which, for a fixed number of breakpoints, the breakpoints are placed such that the maximal deviation is minimized. Alternatively, we use two heuristics which compute the breakpoints subsequently, solving small non-convex problems. We present computational results for 10 univariate functions. Our approach computes breakpoint systems with up to one order of magnitude less breakpoints compared to an equidistant approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kallrath, J.: Combined strategic and operational planning—an MILP success story in chemical industry. OR Spectrum 24(3), 315–341 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Kallrath, J., Maindl, T.I.: Real Optimization with SAP-APO. Springer (2006)

  3. Zheng, Q.P., Rebennack, S., Iliadis, N.A., Pardalos, P.M.: Optimization models in the natural gas industry. In: Rebennack, S., Pardalos, P.M., Pereira, M.V., Iliadis, N.A. (eds.) Handbook of Power Systems I, chap. 6, pp. 121–148. Springer (2010)

  4. Frank, S., Steponavice, I., Rebennack, S.: Optimal power flow: a bibliographic survey I. Energy Syst. 3(3), 221–258 (2012)

    Article  Google Scholar 

  5. Frank, S., Steponavice, I., Rebennack, S.: Optimal power flow: a bibliographic survey II. Energy Syst. 3(3), 259–289 (2012)

    Article  Google Scholar 

  6. Tomlin, J.A.: Special ordered sets and an application to gas supply operating planning. Math. Progr. 45, 69–84 (1988)

    Article  MathSciNet  Google Scholar 

  7. Beale, E.L.M., Tomlin, J.A.: Special facilities in a general mathematical programming system for nonconvex problem using ordered sets of variables. In: Lawrence, J. (ed.) Proceedings of the Fifth International Conference on Operational Research 1969, pp. 447–454. Tavistock Publishing (1970)

  8. Beale, E.L.M.: Two transportation oroblems. In: Proceedings of the Third International Conference on Operational Research 1963, pp. 780–788. Dunod, Paris and English Universities Press (1963)

  9. Beale, E.M.L., Forrest, J.J.H.: Global optimization using special ordered sets. Math. Progr. 10, 52–69 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  10. de Farias Jr, I.R., Johnson, E.L., Nemhauser, G.L.: A generalized assignment problem with special ordered sets. A polyhedral approach. Math. Progr. 89, 187–203 (2000)

    Article  Google Scholar 

  11. de Farias Jr, I.R., Zhao, M., Zhao, H.: A special ordered set approach for optimizing a discontinuous separable piecewise linear function. Oper. Res. Lett. 36, 234–238 (2008)

    Article  MathSciNet  Google Scholar 

  12. Leyffer, S., Sartenaer, A., Wanufelle, E.: Branch-and-refine for mixed-integer nonconvex global optimization (2008)

  13. Vielma, J.P., Ahmed, S., Nemhauser, G.: Mixed-integer models for nonseparable piecewise-linear optimization: unifying framework and extensions. Oper. Res. 53, 303–315 (2009)

    MathSciNet  Google Scholar 

  14. Vielma, J.P., Nemhauser, G.: Modeling disjunctive constraints with a logarithmic number of binary variables and constraints. Math. Progr. 128, 49–72 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Rosen, J.B., Pardalos, P.M.: Global minimization of large-scale constrained concave quadratic problems by separable programming. Math. Progr. 34, 163–174 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  16. Pardalos, P.M., Rosen, J.B.: Constrained Global Optimization: Algorithms and Applications. Lecture Notes in Computer Science. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  17. Geißler, B., Martin, A., Morsi, A., Schewe, L.: Using piecewise linear functions for solving MINLPs. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming. The IMA Volumes in Mathematics and its Applications, vol. 154, pp. 287–314. Springer (2012)

  18. Geißler, B.: Towards globally optimal solutions for MINLPs by discretization techniques with applications in gas network optimization. Dissertation, Universität Erlangen-Nürnberg (2011)

  19. Hettich, R., Kortanek, K.O.: Semi-infinite programming. SIAM Rev. 35, 380–429 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lopez, M., Still, G.: Semi-infinite programming. Eur. J. Oper. Res. 180, 491–518 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Tsoukalas, A., Rustem, B.: A feasible point adaptation of the blankenship and falk algorithm for semi-infinite programming. Optim. Lett. 5(4), 705–716 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Blankenship, J.W., Falk, J.E.: Infinitely constrained optimization problems. J. Optim. Theory Appl. 19, 268–281 (1976)

    Article  MathSciNet  Google Scholar 

  23. Rebennack, S., Kallrath, J.: Continuous piecewise linear delta-approximations for bivariate and multivariate functions. J. Optim. Theory Appl. doi:10.1007/s10957-014-0688-2

  24. Duistermaat, J., Kol, J.: Multidimensional real analysis I: differentiation. Cambridge Studies in Advanced Mathematics (2004)

  25. Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction to global optimization, 2nd edn. Kluwer (2000)

  26. Kallrath, J., Rebennack, S.: Computing area-tight piecewise linear overestimators, underestimators and tubes for univariate functions. In: Butenko, S., Floudas, C., Rassias, T. (eds.) Optimization in Science and Engineering. Springer (2014)

  27. Maranas, C., Floudas, C.A.: Global minimum potential energy conformations of small molecules. J. Glob. Optim. 4, 135–170 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank Jan Jagla (GAMS GmbH, Cologne) for discussions on bi-level programs and Dr. Alexander Mitsos (MIT, Boston) for his favorable comments related to the SIP nature of our problem, Timo Lohmann and Greg Steeger (both Colorado School of Mines) for their careful proof-reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Rebennack.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rebennack, S., Kallrath, J. Continuous Piecewise Linear Delta-Approximations for Univariate Functions: Computing Minimal Breakpoint Systems. J Optim Theory Appl 167, 617–643 (2015). https://doi.org/10.1007/s10957-014-0687-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-014-0687-3

Keywords

Mathematics Subject Classification

Navigation