Skip to main content
Log in

Small Time Uniform Controllability of the Linear One-Dimensional Schrödinger Equation with Vanishing Viscosity

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper addresses the exact controllability problem of the linear one-dimensional Schrödinger equation perturbed by a vanishing viscosity term depending on a strictly positive parameter. It is shown that, for any time and for each initial datum in a suitable space, there exists a uniformly bounded family of boundary controls. Any weak limit of this family is a control for the linear Schrödinger equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lebeau, G.: Contrôle de l’équation de Schrödinger. J. Math. Pures Appl. 71, 267–291 (1992)

    MATH  MathSciNet  Google Scholar 

  2. Machtyngier, E.: Exact controllability for the Schrödinger equation. SIAM J. Control Optim. 32, 24–34 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Miller, L.: The controllability cost of conservative systems: resolvent condition and transmutation. J. Funct. Anal. 218(2), 425–444 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Coron, J.-M.: Control and Nonlinearity. Mathematical Surveys and Monographs, vol. 136. American Mathematical Society, Providence (2007)

    MATH  Google Scholar 

  5. Tucsnak, M., Weiss, G.: Observation and Control for Operator Semigroups. Springer, Basel (2009)

    Book  MATH  Google Scholar 

  6. Bartuccelli, M., Constantin, P., Doering, C.R., Gibbon, J.D., Gisselfält, M.: On the possibility of soft and hard turbulence in the complex Ginzburg–Landau equation. Physica D 44, 421–444 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  7. Levermore, C.D., Oliver, M.: The complex Ginzburg–Landau equation as a model problem. In: Dynamical Systems and Probabilistic Methods in Partial Differential Equations, Berkeley, CA, 1994. Lectures in Appl. Math., vol. 31, pp. 141–190. American Mathematical Society, Providence (1996)

    Google Scholar 

  8. Rosier, L., Zhang, B.Y.: Null controllability of the complex Ginzburg–Landau equation. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26, 649–673 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fu, X.: A weighted identity for partial differential operators of second order and its applications. C.R. Acad. Sci. Paris, Ser. I 342, 579–584 (2006)

    Article  MATH  Google Scholar 

  10. Fu, X.: Null controllability for the parabolic equation with a complex principal part. J. Funct. Anal. 257, 1333–1354 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Aamo, O.M., Smyshlyaev, A., Krstić, M.: Boundary control of the linearized Ginzburg–Landau model of vortex shedding. SIAM J. Control Optim. 43, 1953–1971 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Miller, L.: The control transmutation method and the cost of fast controls. SIAM J. Control Optim. 45(2), 762–772 (2006)

    Article  MathSciNet  Google Scholar 

  13. Micu, S., Rovenţa, I.: Uniform controllability of the linear one dimensional Schrödinger equation with vanishing viscosity. ESAIM Control Optim. Calc. Var. 18, 277–293 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ignat, L., Zuazua, E.: Dispersive properties of numerical schemes for nonlinear Schrödinger equations. In: Pardo, L.M., et al. (eds.) Foundations of Computational Mathematics, Santander, 2005. London Mathematical Society Lecture Notes, vol. 331, pp. 181–207. Cambridge University Press, Cambridge 2006

    Google Scholar 

  15. Ignat, L., Zuazua, E.: Dispersive properties of a viscous numerical scheme for the Schrödinger equation. C.R. Acad. Sci. Paris Ser. I 340, 529–534 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Avdonin, S.A., Ivanov, S.A.: Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  17. Komornik, V., Loreti, P.: Fourier Series in Control Theory. Springer, New York (2005)

    MATH  Google Scholar 

  18. Zabczyk, J.: Mathematical Control Theory: An Introduction. Birkhäuser, Basel (1992)

    MATH  Google Scholar 

  19. Coron, J.-M., Guerrero, S.: Singular optimal control: a linear 1-D parabolic-hyperbolic example. Asymptot. Anal. 44, 237–257 (2005)

    MATH  MathSciNet  Google Scholar 

  20. Glass, O.: A complex-analytic approach to the problem of uniform controllability of a transport equation in the vanishing viscosity limit. J. Funct. Anal. 258, 852–868 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Léautaud, M.: Uniform controllability of scalar conservation laws in the vanishing viscosity limit. SIAM J. Control Optim. 50(3), 1661–1699 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. Bugariu, I.F., Micu, S.: A singular controllability problem with vanishing viscosity. ESAIM: Control Optim. Calc. Var. (2013). doi:10.1051/cocv/2013057

    Google Scholar 

  23. Young, R.M.: An Introduction to Nonharmonic Fourier Series. Academic Press, New York (1980)

    MATH  Google Scholar 

  24. Paley, R.E.A.C., Wiener, N.: Fourier Transforms in Complex Domains. AMS Colloq. Publ., vol. 19. American Mathematical Society, New York (1934)

    Google Scholar 

  25. Fattorini, H.O., Russell, D.L.: Exact controllability theorems for linear parabolic equations in one space dimension. Arch. Ration. Mech. Anal. 4, 272–292 (1971)

    MathSciNet  Google Scholar 

  26. Ingham, A.E.: A note on Fourier transform. J. Lond. Math. Soc. 9, 29–32 (1934)

    Article  MathSciNet  Google Scholar 

  27. Micu, S., De Teresa, L.: A Spectral study of the boundary controllability of the linear 2-D wave equation in a rectangle. Asymptot. Anal. 66, 139–160 (2010)

    MATH  MathSciNet  Google Scholar 

  28. Baudouin, L., Puel, J.-P.: Uniqueness and stability in an inverse problem for the Schrödinger equation. Inverse Probl. 18, 1537–1554 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  29. Mercado, A., Osses, A., Rosier, L.: Inverse problems for the Schrödinger equation via Carleman inequalities with degenerate weights. Inverse Probl. 24, 150–170 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author was supported by strategic grant POSDRU/CPP107/ DMI1.5/S/78421, Project ID 78421 (2010), co-financed by the European Social Fund—Investing in People, within the Sectorial Operational Programme Human Resources Development 2007-2013. The second author was supported by Grant PN-II-ID-PCE-2011-3-0257 of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI. The authors are grateful to Sorin Micu for several interesting suggestions and comments. We also thank the referees for the constructive and helpful comments and suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ionel Rovenţa.

Additional information

Communicated by Enrique Zuazua.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bugariu, I.F., Rovenţa, I. Small Time Uniform Controllability of the Linear One-Dimensional Schrödinger Equation with Vanishing Viscosity. J Optim Theory Appl 160, 949–965 (2014). https://doi.org/10.1007/s10957-013-0387-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-013-0387-4

Keywords

Navigation