Skip to main content
Log in

Skyrmion Emergence Mediated by Antiferromagnetic Interlayer Exchange Coupling

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Skyrmions are considered as topologically protected magnetic textures; they are covering a large area of applications. In this work, we studied using micromagnetic simulations the emergence of skyrmions in a nanodisk stacked in a FM/NM/FM multilayer system. We show how the skyrmion is formed through the antiferromagnetic interlayer exchange coupling (IEC). We also show the impact of the IEC on skyrmion size in both layers. We try as a conclusion to identify the range of IEC where skyrmions could exist in such systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mhlbaüer, S., Binz, B., Jonietz, F., Peiderer, C., Rosch, A., Neubauer, A., Georgii, R., Bӧni, P.: Skyrmion lattice in a chiral magnet. Science. 323, 915–919 (2009)

    Article  ADS  Google Scholar 

  2. Bogdanov, A.N., Rößler, U.K.: Chiral symmetry breaking in magnetic thin films and multilayers. Phys. Rev. Lett. 87, 037203 (2001)

    Article  ADS  Google Scholar 

  3. Tokunaga, Y., Yu, X.Z., White, J.S., Rønnow, H.M., Morikawa, D., Taguchi, Y., Tokura, Y.: A new class of chiral materials hosting magnetic skyrmions beyond room temperature. Nat. Commun. 6, 7638 (2015)

    Article  ADS  Google Scholar 

  4. Dzyaloshinskii, I.: Sov. Phys. JETP. 5, 1259 (1957)

    Google Scholar 

  5. Moriya, T.: New mechanism of anisotropic superexchange interaction. Phys. Rev. Lett. 4, 228–230 (1960)

    Article  ADS  Google Scholar 

  6. Belmeguenai, M., Gabor, M.S., Roussigné, Y., Petrisor Jr., T., Mos, R.B., Stashkevich, A., Chérif, S.M., Tiusan, C.: Phys. Rev. B. 97, 054425 (2018)

    Article  ADS  Google Scholar 

  7. Jeong, T., Pickett, W.E.: Implications of the B20 crystal structure for the magnetoelectronic structure ofMnSi. Phys. Rev. B. 70, 075114 (2004)

    Article  ADS  Google Scholar 

  8. Yu, X.Z., Onose, Y., Kanazawa, N., Park, J.H., Han, J.H., Matsui, Y., Nagaosa, N., Tokura, Y.: Real-space observation of a two-dimensional skyrmion crystal. Nature. 465, 901–904 (2010)

    Article  ADS  Google Scholar 

  9. Sampaio, J., Cros, V., Rohart, S., Thiaville, A., Fert, A.: Nat. Nano. 8, 839–844 (2013)

    Article  Google Scholar 

  10. Kézsmárki, I., Bordács, S., Milde, P., Neuber, E., Eng, L.M., White, J.S., Rønnow, H.M., Dewhurst, C.D., Mochizuki, M., Yanai, K., Nakamura, H., Ehlers, D., Tsurkan, V., Loidl, A.: Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8. Nat. Mater. 14, 1116–1122 (2015)

    Article  ADS  Google Scholar 

  11. Fattouhi, M., El Hafidi, M.Y., El Hafidi, M.: Single skyrmion induced by external magnetic field in CoFeB ferromagnetic alloy nanodisks. J. Magn. Magn. Mater. 468, 8–13 (2018)

    Article  ADS  Google Scholar 

  12. Okubo, T., Chung, S., Kawamura, H.: Multiple-qStates and the skyrmion lattice of the triangular-lattice Heisenberg antiferromagnet under magnetic fields. Phys. Rev. Lett. 108, 017206 (2012)

    Article  ADS  Google Scholar 

  13. Lin, Y.S., Grundy, P.J., Giess, E.A.: Bubble domains in magnetostatically coupled garnet films. Appl. Phys. Lett. 23, 485–487 (1973)

    Article  ADS  Google Scholar 

  14. Heinze, S., Bergmann, K.V., Menzel, M., Brede, J., Kubetzka, A., Wiesendanger, R., Bihlmayer, G., Blügel, S.: Nat. Phys. 7, 713–718 (2011)

    Article  Google Scholar 

  15. Dai, Y.Y., Wang, H., Tao, P., Yang, T., Ren, W.J., Zhang, Z.D.: Skyrmion ground state and gyration of skyrmions in magnetic nanodisks without the Dzyaloshinsky-Moriya interaction. Phys. Rev. B. 88, 054403 (2013)

    Article  ADS  Google Scholar 

  16. Fattouhi, M., El Hafidi, M.Y., El Hafidi, M., Kassiba, A., Yaacoub, N., Supercond, J.: Study of nucleation/annihilation process and vortices characteristics in Co/Py rectangular bilayers. Nov. Magn. (2018). https://doi.org/10.1007/s10948-018-4725-5

  17. Bobo, J.F., Kikuchi, H., Redon, O., Snoeck, E., Piecuch, M., White, R.L.: Pinholes in antiferromagnetically coupled multilayers: Effects on hysteresis loops and relation to biquadratic exchange. Rev B. 60, 4131–4141 (1999)

    Article  Google Scholar 

  18. Zhu-Pei, S., Peter, L.M., John, F.L.: Phys. Rev. Lett. 69, 3678–3681 (1992)

    Article  ADS  Google Scholar 

  19. Vansteenkiste, A., Leliaert, J., Dvornik, M., Helsen, M., Garcia-Sanchez, F., Van Waeyenberge, B.: AIP Adv. 107133, 4 (2014)

    Google Scholar 

  20. Abo, G.S., Hong, Y.-K., Park, J., Lee, J., Lee, W., Choi, B.-C.: IEEE Trans On Mag. 49, 4937 (2013)

    Article  ADS  Google Scholar 

  21. Daughton, J.: Magnetoelectronics. 205-229, 379–380 (2004)

    Google Scholar 

  22. Johnson, M.T.: Structural dependence of the oscillatory exchange interaction across Cu layers. Phys. Rev. Lett. 68, 2688–2691 (1992)

    Article  ADS  Google Scholar 

  23. Zhang, X., Zhou, Y., Ezawa, M.: Nat. Commun. 10293, 7 (2016)

    ADS  Google Scholar 

  24. Koshibae, W., Nagaosa, N.: Theory of skyrmions in bilayer systems. Sci. Rep. 7, 42645 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouad Fattouhi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fattouhi, M., El Hafidi, M.Y. & El Hafidi, M. Skyrmion Emergence Mediated by Antiferromagnetic Interlayer Exchange Coupling. J Supercond Nov Magn 32, 2509–2513 (2019). https://doi.org/10.1007/s10948-018-4975-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4975-2

Keywords

Navigation