Skip to main content
Log in

Critical Current Density and AC Susceptibility of Bi1.6Pb0.4Sr2Ca2Cu3O10 Superconductor with Ni0.5Zn0.5Fe2O4 Nanomaterial

  • Original Research
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The juxtaposition of superconductivity and magnetism is an interesting research topic due to the exclusivity nature of both phenomena. In this paper, we report the effect of nanosized (~ 5 nm) nickel zinc ferrite Ni0.5Zn0.5Fe2O4 (NZFO) on Bi1.6Pb0.4Sr2Ca2Cu3O10 (Bi-2223) superconductor. Bi-2223 powders were prepared using the co-precipitation method. Samples with starting formula Bi1.6Pb0.4Sr2Ca2Cu3O10(Ni0.5Zn0.5Fe2O4)x for x = 0 to 0.1 wt% have been prepared. The structure, microstructure, electrical resistance, and AC susceptibility were determined. The transport critical current density, Jct, was measured using the 1 μV/cm criterion. The non-added sample sintered for 48 h showed the highest zero resistance temperature, Tc-zero (105 K) and Jct of 1.83 A cm−2 at 40 K. The x = 0.02 wt% sample sintered for 48 h (Tc-zero = 103 K) showed the highest Jct of 5.30 A cm−2 at 40 K. The peak temperature of the imaginary part of the complex susceptibility, Tp, increased with sintering time and nanoparticle addition, indicating full flux penetration occurred at higher temperatures and improved intergrain coupling. NZFO nanoparticle did not suppress the transition temperature but it improved the transport critical current density by more than five times indicating it enhanced flux pinning and connectivity between grains in the Bi-2223 phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kong, W., Abd-Shukor, R.: J. Supercond. Nov. Mag. 23, 257 (2009)

    Article  Google Scholar 

  2. Hafiz, M., Abd-Shukor, R.: Adv Mat Sci Engg. Art. No. 146476. (2015)

  3. Roumié, M., Marhaba, S., Awad, R., Kork, M., Hassan, I., Mawassi, R.: J. Supercond. Nov. Mag. 27, 143 (2013)

    Article  Google Scholar 

  4. Agail, A., Abd-Shukor, R.: J. Supercond. Nov. Mag. 27, 1273 (2014)

    Article  Google Scholar 

  5. Kong, W., Abd-Shukor, R.: J. Elect. Mat. 36(12), 1648 (2007)

    Article  ADS  Google Scholar 

  6. Barakat, M.M.E., Isber, S., Al-Sayyed, N., Awad, R., Roumié, M.: J. Supercond. Nov. Mag. 29(7), 1703 (2016)

    Article  Google Scholar 

  7. Muhammad-Aizat, K., Abd-Shukor, R.: Sains Malays. 47(7), 1579 (2018)

    Article  Google Scholar 

  8. Lyuksyutov, I.F., Naugle, D.G.: Mod. Phys. Lett. B. 13, 491 (1999)

    Article  ADS  Google Scholar 

  9. Gul, I.H., Amin, F., Abbasi, A.Z., Anis-ur-Rehman, M., Maqsood, A.: Phys. C. 449(2), 139 (2006)

    Article  ADS  Google Scholar 

  10. Zhang, W., Ramesh, R., MacManus-Driscoll, J.L., Wang, H.: MRS Bull. 40(9), 736 (2015)

    Article  Google Scholar 

  11. Morrison, S.A., Cahill, C.L., Carpenter, E.E., Calvin, S., Swaminathan, R., McHenry, M.E., Harris, V.G.: J. Appl. Phys. 95, 6392 (2004)

    Article  ADS  Google Scholar 

  12. Chen, D.G., Tang, X.G., Tong, J.J., Wu, J.B., Jiang, Y.P., Liu, Q.X.: Solid State Commun. 151, 1042 (2011)

    Article  ADS  Google Scholar 

  13. Yu, Q.Y., Liu, H.K., Dou, S.X.: Phys. C. 250, 7–14 (1995)

    Article  ADS  Google Scholar 

  14. Nkum, R.K., Datars, W.R.: Supercond. Sci. Technol. 8, 822–826 (1995)

    Article  ADS  Google Scholar 

  15. Bean, C.P.: Rev. Mod. Phys. 36, 31 (1964)

    Article  ADS  Google Scholar 

  16. Gomory, F.: Supercond. Sci. Technol. 10, 523 (1997)

    Article  ADS  Google Scholar 

  17. Nabil, A.A.: Yahya, Abd-Shukor, R. J. Supercond. Nov. Mag. 27(2), 329 (2014)

    Article  Google Scholar 

  18. Agail, A., Abd-Shukor, R.: Appl. Phys. A Mater. Sci. Process. 112(2), 501 (2013)

    Article  ADS  Google Scholar 

  19. Azman, N.J., Abdullah, H., Abd-Shukor, R.: Adv. Cond. Mat. Phys. Art. No. 498747 (2014)

  20. Kilic, A., Kilic, K., Senoussi, S.: J. Appl. Phys. 84(6), 3254 (1998)

    Article  ADS  Google Scholar 

  21. Kilic, A.: Supercond. Sci. Technol. 8, 497 (1995)

    Article  ADS  Google Scholar 

Download references

Funding

This research was supported by the Ministry of Education, Malaysia under grant no. FRGS/1/2017/STG02/UKM/01/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Abd-Shukor.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohd Suib, N.R., Abu Bakar, I.P., Ibrahim, N.B. et al. Critical Current Density and AC Susceptibility of Bi1.6Pb0.4Sr2Ca2Cu3O10 Superconductor with Ni0.5Zn0.5Fe2O4 Nanomaterial. J Supercond Nov Magn 32, 145–150 (2019). https://doi.org/10.1007/s10948-018-4911-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4911-5

Keywords

Navigation