Skip to main content
Log in

Synthesis and Characterization of Nickel-Substituted Cobalt Ferrite Nanoparticles Using Sol–Gel Auto-combustion Method

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In the present work, Co1−xNixFe2O4 (x = 0.02, 0.04, and 0.06 M) is prepared by sol–gel auto-combustion method and its structural, functional, magnetic, and morphological characteristics are analyzed. The peaks corresponding to the plane observed from XRD matches with JCPDS data of CoFe2O4 (22-1086) and NiFe2O4 (10-0325). It is noted that the average crystallite size decreases from 31 to 27 nm when the nickel concentration increases from 0.02 to 0.06 M, indicative of the incorporation of Ni2+ ion in the cobalt ferrite lattice. FTIR analysis shows the presence of M\(\leftrightarrow \)O vibration at the tetrahedral and octahedral sites. Micro - Raman spectroscopy shows the stretching vibrations at 486.87 cm− 1 (Eg) and 696.96 cm− 1 (A1g), which are the characteristic vibrations of spinel ferrites. Magnetic studies show the variation in saturation magnetization (MS = 20.25, 9.41, 18.5 emu/g.) and coercivity (HC = 746.06, 953.03, 885.59 Oe) when the concentration of Ni2+ ion increases from 0.02 to 0.06 M. The prepared nanoparticles show a ferromagnetic nature which is attributed to the creation of an antiparallel spin and the magnetic moment created by the cation at tetrahedral and octahedral sites. The surface morphology of samples is imaged by a field emission scanning electron microscope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Padmapriya, G., Manikandan, A., Krishnasamy, V., Jaganathan, S.K., Arul Antony, S.: Enhanced catalytic activity and magnetic properties of spinel MnxZn1−xFe2 O 4 (0.0 \(\le \) x \(\le \) 1.0) nano-photocatalysts by microwave irradiation route. J. Supercond. Novel Magn. 29, 2141–2149 (2016)

    Article  Google Scholar 

  2. Godlyn Abrahama, A., Manikandan, A., Manikandan, E., Vadivel, S., Jaganathan, S.K., Baykali, A., Sri Renganathan, P.: Enhanced magneto-optical and photo-catalytic properties of transition metal cobalt (Co2+ ions) doped spinel MgFe2 O 4 ferrite nanocomposites. J. Magn. Magn. Mater. 452, 380–388 (2018)

    Article  ADS  Google Scholar 

  3. Silambarasu, A., Manikandan, A., Balakrishnan, K.: Room-temperature superparamagnetism and enhanced photocatalytic activity of magnetically reusable spinel ZnFe2 O 4 nanocatalysts. J. Supercond. Novel Magn. 30(9), 2631–2640 (2017)

    Article  Google Scholar 

  4. Asiri, S., Sertkol, M., Guner, S., Gungunes, H., Batoo, KM., Saleh, TA., Sozeri, H., Almessiere, MA., Manikandan, A., Baykal, A.: Hydrothermal synthesis of CoyZnyMn1 − 2yFe2 O 4 nanoferrites: magneto-optical investigation. Ceram. Int. 44(5), 5751–5759 (2018)

    Article  Google Scholar 

  5. Godlyn Abraham, A., Manikandan, A., Manikandan, E., Jaganathan, S.K., Baykal, A., Renganathan, P.: Enhanced opto-magneto properties of Nix Mg1−x Fe2 O 4 (0.0≤ x≤ 1.0) ferrites nano-catalysts. J. Nanoelectron. Optoelectron. 12(12), 1326–1333 (2017)

    Article  Google Scholar 

  6. Manikandan, A., Durka, M., Antony, SA.: A novel synthesis, structural, morphological, and opto-magnetic characterizations of magnetically separable spinel CoxMn1−xFe2 O 4 (0 \(\le \) x \(\le \) 1) nano-catalysts. J. Supercond. Novel Magn. 27(12), 2841–2857 (2014)

    Article  Google Scholar 

  7. Manikandan, A., Durka, M., Antony, SA.: Role of Mn2+ doping on structural, morphological, and opto-magnetic properties of spinel MnxCo1−xFe2 O 4 (x= 0.0, 0.1, 0.2, 0.3, 0.4, and 0.5) nanocatalysts. J. Supercond. Novel Magn. 28(7), 2047–2058 (2015)

    Article  Google Scholar 

  8. Hema, E., Manikandan, A., Karthika, P., Antony, SA., Venkatraman, BR.: A novel synthesis of Zn2+-doped CoFe2 O 4 spinel nanoparticles: structural, morphological, opto-magnetic and catalytic properties. J. Supercond. Novel Magn. 28(8), 2539–2552 (2015)

    Article  Google Scholar 

  9. Singhal, S., Singh, J., Barthwal, S., Chandra, K.: Preparation and characterization of nanosize nickel-substituted cobalt ferrites (Co1−xNixFe2 O 4). J. Solid State Chem. 178(10), 3183–3189 (2005)

    Article  ADS  Google Scholar 

  10. Deraz, N., Alarifi, A.: Novel preparation and properties of magnesioferrite nanoparticles. J. Anal. Appl. Pyrolysis 97, 55–61 (2012)

    Article  Google Scholar 

  11. Manikandan, A., Sridhar, R., Antony, S.A., Ramakrishna, S.: A simple aloe vera plant-extracted microwave and conventional combustion synthesis: morphological, optical, magnetic and catalytic properties of CoFe2 O 4 nanostructures. J. Mol. Struct. 1076, 188–200 (2014)

    Article  ADS  Google Scholar 

  12. Barathiraja, C., Manikandan, A., Uduman Mohideen, AM., Jayasree, S., Arul Antony, S.: Magnetically recyclable spinel MnxNi1−xFe2 O 4 (x = 0.0–0.5) nano-photocatalysts: structural, morphological and opto-magnetic properties. J. Supercond. Novel Magn. 29, 477–486 (2016)

    Article  Google Scholar 

  13. Hema, E., Manikandan, A., Karthika, P., Durka, M., Arul Antony, S., Venkatraman, BR.: Magneto-optical properties of reusable spinel NixMg1−xFe2 O 4 (0.0≤ x≤ 1.0) nano-catalysts. J. Nanosci. Nanotechnol. 16(7), 7325–7336 (2016)

    Article  Google Scholar 

  14. Manikandan, A., Durka, M., Seevakan, S., Antony, SA.: A novel one-pot combustion synthesis and opto-magnetic properties of magnetically separable spinel MnxMg1−xFe2 O 4 (0.0 \(\le \) x \(\le \) 0.5) nanophotocatalysts. J. Supercond. Novel Magn. 28(4), 1405–1416 (2015)

    Article  Google Scholar 

  15. Zhang, S., Jiao, Q., Zhao, Y., Li, H., Wu, Q.: Preparation of rugby-shaped CoFe2 O 4 particles and their microwave absorbing properties. J. Mater. Chem. A 2(42), 18033–18039 (2014)

    Article  Google Scholar 

  16. Nongjai, R., Khan, S., Asokan, K., Ahmed, H., Khan, I.: Magnetic and electrical properties of In doped cobalt ferrite nanoparticles. J. Appl. Phys. 112(8), 084321 (2012)

    Article  ADS  Google Scholar 

  17. Iqbal, M.J., Ahmad, Z.: Electrical and dielectric properties of lithium manganate nanomaterials doped with rare-earth elements. J. Power Sources 179(2), 763–769 (2008)

    Article  ADS  Google Scholar 

  18. Hankare, P., Sanadi, K., Garadkar, K., Patil, D., Mulla, I.: Synthesis and characterization of nickel substituted cobalt ferrite nanoparticles by sol–gel auto-combustion method. J. Alloys Compd. 553, 383–388 (2013)

    Article  Google Scholar 

  19. Mehta, R., Yang, K., Misra, M.: Mixed waste ferrite as a novel sorbent for carbon dioxide derived from flue gases. J. Mater. Sci. 31(7), 1873–1877 (1996)

    Article  ADS  Google Scholar 

  20. Gotic, M., Czako-Nagy, I., Popovic, S., Music, S: Formation of nanocrystalline NiFe2 O 4. Philos. Mag. Lett. 78(3), 193–201 (1998)

    Article  ADS  Google Scholar 

  21. Sutka, A., Mezinskis, G.: Sol-gel auto-combustion synthesis of spinel-type ferrite nanomaterials. Front. Mater. Sci. 6(2), 128–141 (2012)

    Article  Google Scholar 

  22. Zalak, J., Davit, D., Rathod, K.N., Gadani, K., Joshi, A.D., Solanki, P.S., Shah, N.A.: Magnetoelectric properties of nanostructured YMnO3 prepared by sol–gel technique. Mater. Today: Proc. 5, 9922–9926 (2018)

    Google Scholar 

  23. Maria LuminaSonia, M., Anand, S., Maria Vinosel, V., AsisiJanifer, M., Pauline, S., Manikandan, A.: Effect of lattice strain on structure, morphology and magneto-dielectric properties of spinel NiGdxFe2−x O 4 ferrite nano-crystallites synthesized by sol-gel route. J. Magn. Magn. Mater. 466, 238–251 (2018)

    Article  ADS  Google Scholar 

  24. Chinnaraj, K., Manikandan, A., Ramu, P., Antony, S.A., Neeraja, P.: Comparative studies of microwave- and sol-gel-assisted combustion methods of Fe3 O 4 nanostructures: structural, morphological, optical, magnetic, and catalytic properties. J. Supercond. Novel Magn. 28(1), 179–190 (2015)

    Article  Google Scholar 

  25. Teresita, V.M., Manikandan, A., Josephine, B.A., Sujatha, S., Antony, S.A.: Electromagnetic properties and humidity-sensing studies of magnetically recoverable LaMgxFe1−x O 3−δ perovskites nano-photocatalysts by sol-gel route. J. Supercond. Novel Magn. 29(6), 1691–1701 (2016)

    Article  Google Scholar 

  26. Josephine, B.A., Manikandan, A., Teresita, V.M., Antony, S.A.: Fundamental study of LaMgx Cr1−x O3−δ perovskites nano-photocatalysts: sol-gel synthesis, characterization and humidity sensing. Korean J. Chem. Eng. 33(5), 1590–1598 (2016)

    Article  Google Scholar 

  27. Basheer, H.S., Gadein, A.H.O., Mohammed, M.E.I., Hassan, E.A., Ahmed, H.A.M., Babiker, S.F.: Synthesis of ZnO nanostructures by simple chemistry. Red Sea University J. Basic Applied Sci. 2(3), 254–268 (2017)

    Google Scholar 

  28. Pandit, A., Shitre, A., Shengule, D., Jadhav, K.: Magnetic and dielectric properties of Mg1+xMnx, Fe2 − 2x, O4 ferrite system. J. Mater. Sci. 40(2), 423–428 (2005)

    Article  ADS  Google Scholar 

  29. Ajmal, M., Maqsood, A: Structural, electrical and magnetic properties of Cu1−xZnxFe2 O 4 ferrites (0≤ x≤ 1). J. Alloys Compd. 460(1–2), 54–59 (2008)

    Article  Google Scholar 

  30. Liu, X., Prewitt, C.T.: High-temperature X-ray diffraction study of Co3 O 4: transition from normal to disordered spinel. Phys. Chem. Miner. 17(2), 168–172 (1990)

    Article  ADS  Google Scholar 

  31. Baraliya, J., Joshi, H: Spectroscopy investigation of nanometric cobalt ferrite synthesized by different techniques. Vib. Spectrosc. 74, 75–80 (2014)

    Article  Google Scholar 

  32. Kreisel, J., Lucazeau, G., Vincent, H.: Raman spectra and vibrational analysis of BaFe12 O 19 hexagonal ferrite. J. Solid State Chem. 137(1), 127–137 (1998)

    Article  ADS  Google Scholar 

  33. Dixit, G., Singh, J., Srivastava, R., Agrawal, H., Chaudhary, R: Structural, magnetic and optical studies of nickel ferrite thin films. Adv. Mater. Lett. 3(1), 21–26 (2012)

    Article  Google Scholar 

  34. Choi, Y.I., Kim, Y.-I., Cho, D.W., Kang, J.-S., Leung, K., Sohn, Y.: Recyclable magnetic CoFe2 O 4/BiOX (X= Cl, Br and I) microflowers for photocatalytic treatment of water contaminated with methyl orange, rhodamine B, methylene blue, and a mixed dye. RSC Adv. 5(97), 79624–79634 (2015)

    Article  Google Scholar 

  35. Assar, S., Abosheiasha, H: Effect of Ca substitution on some physical properties of nano-structured and bulk Ni-ferrite samples. J. Magn. Magn. Mater. 374, 264–272 (2015)

    Article  ADS  Google Scholar 

  36. Zaki, H., Dawoud, H.: Far-infrared spectra for copper–zinc mixed ferrites. Physica B: Condens. Matter 405(21), 4476–4479 (2010)

    Article  ADS  Google Scholar 

  37. Goodenough, J.B., Loeb, A.L.: Theory of ionic ordering, crystal distortion, and magnetic exchange due to covalent forces in spinels. Phys. Rev. 98(2), 391–408 (1955)

    Article  ADS  Google Scholar 

  38. Velhal, N.B., Patil, N.D., Shelke, A.R., Deshpande, N.G., Puri, V.R.: Structural, dielectric and magnetic properties of nickel substituted cobalt ferrite nanoparticles: effect of nickel concentration. AIP Adv. 5(9), 097166 (2015)

    Article  ADS  Google Scholar 

  39. Häfeli, U., Schütt, W., Teller, J., Zborowski, M.: Scientific and clinical applications of magnetic carriers. Springer Science & Business Media (2013)

  40. Ansari, F., Sobhani, A., Salavati-Niasari, M.: Sol–gel auto-combustion synthesis of PbFe12 O 19 using maltose as a novel reductant. RSC Adv. 4(109), 63946–63950 (2014)

    Article  Google Scholar 

  41. Ponce, A., Chages, E.F., Prado, R.J., Fernandes, C.H.M., Terezo, A.J., Baggio-Saitovitch, E.: High coercivity induced by mechanical milling in cobalt ferrite powders. J. Magn. Magn. Mater. 344, 182–187 (2013)

    Article  ADS  Google Scholar 

  42. Gonzalez-Sandoval, M., Beesley, A., Miki-Yoshida, M., Fuentes-Cobas, L., Matutes-Aquino, J.: Comparative study of the microstructural and magnetic properties of spinel ferrites obtained by co-precipitation. J. Alloys Compd. 369(1–2), 190–194 (2004)

    Article  Google Scholar 

  43. Nejati, K, Zabihi, R.: Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method. Chem. Cent. J. 6(23), 1–6 (2012)

    Google Scholar 

  44. Pulisova, P., Kovac, J., Voigt, A., Raschmana, P.: Structure and magnetic properties of Co and Ni nano-ferrites prepared by a two step direct microemulsions synthesis. J. Magn. Magn. Mater. 341, 93–99 (2013)

    Article  ADS  Google Scholar 

  45. Kambale, R., Shaikh, P., Bhosale, C., Rajpure, K., Kolekar, Y.: Dielectric properties and complex impedance spectroscopy studies of mixed Ni–Co ferrites. Smart Mater. Struct. 18(8), 085014 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Dr. M. Karthega (Amrita Materials Science Lab), Assistant Professor, Department of Sciences, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India, for providing the laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Rajni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, G.S., Raguram, T. & Rajni, K.S. Synthesis and Characterization of Nickel-Substituted Cobalt Ferrite Nanoparticles Using Sol–Gel Auto-combustion Method. J Supercond Nov Magn 32, 1715–1723 (2019). https://doi.org/10.1007/s10948-018-4867-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4867-5

Keywords

Navigation