Skip to main content
Log in

Solvothermal Synthesis of Mesoporous Fe3O4 Nanoparticles in Mixed Solvent of Ethylene Glycol and Water: Structure and Magnetic Properties

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Mesoporous Fe3O4 nanoparticles were synthesized by a solvothermal method, via a mixed solvent of ethylene glycol (EG) and deionized water, using iron chloride and urea as the precursors. The phase, morphology, and pore structure are investigated by the characterization of X-ray diffraction (XRD), transmission electron microscopy (TEM), and N2 isotherm adsorption–desorption. The results show that the amount of water in the mixed solvent plays vital role in controlling the size of Fe3O4 nanoparticles, specific surface area, and pore size. Additionally, solid Fe3O4 nanospheres were prepared using only EG as solvent, while α-Fe2O3 nanosized polyhedrals were obtained with only water as solvent. The mesoporous Fe3O4 nanoparticles show a ferromagnetic behavior, with saturation magnetizations (Ms) of 78–82 emu g− 1 and coercivities (Hc) ranging from 13–58 Oe. The α-Fe2O3 nanoparticles also exhibit a weak-ferrimagnetic character, with a remanent magnetization (Mr) of 0.24 emu g− 1, and Hc of 558 Oe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Karunakaran, C., Vinayagamoorthy, P., Jayabharathi, J.: Langmuir 49, 15031 (2014)

    Article  Google Scholar 

  2. Hou, B.H., Wang, Y.Y., Guo, J.Z., et al.: ACS Appl. Mater. Interfaces 4, 3581 (2018)

    Article  Google Scholar 

  3. Wang, X.Y., Liao, Y.L., Zhang, H.W., et al.: ACS Appl. Mater. Interfaces 4, 3644 (2018)

    Article  Google Scholar 

  4. Su, J., Cao, M.H., Ren, L., et al.: J. Phys. Chem. C 30, 14469 (2011)

    Article  Google Scholar 

  5. Zhu, Y.F., Fang, Y., Kaskel, S.: J. Phys. Chem. C 39, 16382 (2010)

    Article  Google Scholar 

  6. Liu, R., Guo, Y.L., Odusote, G., et al.: ACS Appl. Mater. Interfaces 18, 9167 (2013)

    Article  Google Scholar 

  7. Wu, W., Jiang, C.Z., Roy, V.A.L.: Nanoscale 8, 19421 (2016)

    Article  Google Scholar 

  8. Laurent, S., Forge, D., Port, M., et al.: Chem. Rev. 108, 2064 (2008)

    Article  Google Scholar 

  9. Xiao, Z., Xia, Y., Ren, Z.H., et al.: J. Mater. Chem. 22, 20566 (2012)

    Article  Google Scholar 

  10. Zhang, D.P., Lu, C.H., Ni, Y.R., et al.: CrystEngComm 15, 4755 (2013)

    Article  Google Scholar 

  11. Xuan, X.H., Wang, F., Lai, J.M.Y., et al.: ACS Appl. Mater. Interfaces 2, 237 (2011)

    Article  Google Scholar 

  12. Xia, T., Xu, X.L., Wang, J.P., et al.: Electrochim. Acta 160, 115 (2014)

    Google Scholar 

  13. Jiang, T., Poyraz, A.S., Lyer, A., et al.: J. Phys. Chem. C 19, 10454 (2015)

    Article  Google Scholar 

  14. Chen, L.Y., Lin, Z., Zhao, C.L., et al.: J. Alloys Compd. 1, L1 (2011)

    Article  Google Scholar 

  15. Jayanthi, S.A., Gnana, D.M., Jayashainy, J., et al.: Mater. Chem. Phys. 162, 316 (2015)

    Article  Google Scholar 

  16. Jiang, K., Sun, B.L., Yao, M.Q., et al.: Micro. Meso. Mater. 124, 197 (2009)

    Article  Google Scholar 

  17. Zhou, W.J., He, W., Zhong, S.D., et al.: J. Magn. Magn. Mater. 321, 1025 (2009)

    Article  ADS  Google Scholar 

  18. Zhang, Y., Chai, C.P., Lou, Y.J., et al.: Mater. Sci. Eng. B 188, 13 (2014)

    Article  Google Scholar 

  19. Asuha, S., Wang, H.L., Zhao, S., et al.: Ceram. Int. 38, 6579 (2012)

    Article  Google Scholar 

  20. Guo, S.J., Li, D., Zhang, L.S., et al.: Biomaterials 30, 1881 (2009)

    Article  Google Scholar 

  21. Zhang, Y.J., Or, S.W., Zhang, Z.D.: J. Nanosci. Nanotechnol. 14, 4664 (2014)

    Article  Google Scholar 

  22. Pol, V.G., Daemen, L.L., Vogel, S., et al.: Ind. Eng. Chem. Res. 920, 2 (2010)

    Google Scholar 

  23. Deng, H., Li, X.L., Peng, Q., et al.: Angew. Chem. Int. Ed. 44, 2782 (2005)

    Article  Google Scholar 

  24. Yu, D., Sun, X., Zou, J., et al.: J. Phys. Chem. B 110, 21667 (2006)

    Article  Google Scholar 

  25. Thomms, M., Kaneko, K., Neimark, A.V.: Pure Appl. Chem. 1051, 9–10 (2015)

    Google Scholar 

  26. Cychosz, K.A., G–Nicolas, R., G-Martinez, J., et al.: Chem. Soc. Rev. 46, 389 (2017)

    Article  Google Scholar 

  27. Yu, J.G., Jin, J., Cheng, B., et al.: J. Mater. Chem. A 2, 3407 (2014)

    Article  Google Scholar 

  28. Zhong, L.S., Hu, J.S., Liang, H.P., et al.: Adv. Mater. 18, 2426 (2006)

    Article  Google Scholar 

  29. Zhang, Y.J., Zhu, Y., Wang, K.J., et al.: J. Porous Mater. 22, 959 (2015)

    Article  Google Scholar 

  30. Zhang, D.P., Lu, C.H., Ni, Y.R., et al.: CrystEngComm 15, 4755 (2013)

    Article  Google Scholar 

  31. He, T., Chen, D.R., Jiao, X.L.: Chem. Mater. 16, 737 (2004)

    Article  Google Scholar 

  32. Dan, D.H., Wang, J.P., Luo, H.L., et al.: J. Magn. Magn. Mater. 136, 176 (1994)

    Article  ADS  Google Scholar 

  33. Santra, S., Tapec, R., Theodoropoulou, N., et al.: Langmuir. Mater. 17, 2900 (2001)

    Article  Google Scholar 

  34. Alben, R., Becker, J.J., Chi, M.C.: J. Appl. Phys 49, 1653 (1978)

    Article  ADS  Google Scholar 

  35. Novoselova, L.Y.: RSC Adv. 7, 51298 (2017)

    Article  Google Scholar 

  36. Manukyan, K.V., Chen, Y.S., Rouvimov, S., Li, P., Li, X., Dong, S.N., Liu, X.Y., Furduna, J.K., Orlov, A., Bernstein, G.H., Porod, W., Roslyakov, S., Mukasyan, A.S.: J. Phys. Chem. C 118, 16264 (2014)

    Article  Google Scholar 

  37. Roy, M., Milan, M., Naskar, K.: Phys. Chem. Chem. Phys. 18, 20528 (2016)

    Article  Google Scholar 

  38. Bødker, F., Hansen, M., Koch, C., et al.: Phys. Rev. B: Condens. Matter Mater. Phys. 61, 6826 (2000)

    Article  ADS  Google Scholar 

  39. Tadic, M., Panjan, M., Damnjanovic, V., et al.: Appl. Surf. Sci. 320, 183 (2014)

    Article  ADS  Google Scholar 

  40. Lee, J., Kwak, S.Y.: Cryst. Growth Des. 17, 4496 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the National Nature Science Foundation of China (51301114, 21203125, 51602206), Natural Science Foundation of Liaoning Province (201602598, 2015020649), and the Science Research Foundation of Education Department of Liaoning Province (LQ2017011, L2016003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yajing Zhang or Kangjun Wang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, C., Liu, L. et al. Solvothermal Synthesis of Mesoporous Fe3O4 Nanoparticles in Mixed Solvent of Ethylene Glycol and Water: Structure and Magnetic Properties. J Supercond Nov Magn 32, 757–762 (2019). https://doi.org/10.1007/s10948-018-4766-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4766-9

Keywords

Navigation