Skip to main content
Log in

Investigation of Transport Properties of Some Superconductor Nickel-Based Antiperovskite XNNi3 (X = Mg, Al, Cu, Zn, Ga, Ag, Cd, In, Sn, Sb, Pt and Pb)

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We report, in this work, a theoretical study of electronic and transport (thermoelectric) properties of some superconductor nickel-based antiperovskite XNNi3 (X = Mg, Al, Cu, Zn, Ga, Ag, Cd, In, Sn, Sb, Pt and Pb) using first-principles calculations with the full-potential linearized augmented plane wave (FPLAPW) method based on the density functional theory (DFT) as implemented in the WIEN2k package. Electronic properties are calculated and show that the studied materials are of metallic type which is in good agreement with experimental data. The Seebeck coefficient, thermal conductivity, electrical conductivity and figure of merit were reported. The results obtained show that the zinc (Zn) and silver (Ag) materials are characterized by a high value of the figure of merit at room temperature (300 K) which is respectively 0.86 and 1.02 in a p-type region. In the case of the transition metals, the maximum values of S increase in going from the Pt atom to the Zn atom and then decrease for the Cd atom. Furthermore, the Wiedemann–Franz law which states that the ratio of thermal to electrical conductivity for metals is constant is well verified in this work. The electric conductivity values are almost invariant with the temperature except for the case of MgNNi3 and AgNNi3 compounds in which it increases with T slightly. So, the superconducting materials based on silver and zinc are the best for the thermoelectric applications at room temperature due to the very important value of the factor of merit and the Seebeck coefficient obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Xi, H., Luo, L., Fraisse, G.: Renew. Sustain. Energy Rev. 11(5), 923 (2007)

    Article  Google Scholar 

  2. Budak, S., Alim, M.A., Bhattacharjee, S., Muntele, C.: Phys. Procedia 66, 321 (2015)

    Article  ADS  Google Scholar 

  3. Riffat, S.B., Xiaoli, M.: Appl. Therm. Eng. 23, 913 (2003)

    Article  Google Scholar 

  4. Budak, S., Guner, S., Minamisawa, R.A., Muntele, C.I., Ila, D.: Appl. Surf. Sci. 310, 226 (2014)

    Article  ADS  Google Scholar 

  5. Sahin, A.Z., Yilbas, B.S.: Energ. Conver. Manage. 65, 26 (2013)

    Article  Google Scholar 

  6. Bell, L.E.: Science 321, 1457 (2008)

    Article  ADS  Google Scholar 

  7. Qu, X., Wang, W., Liu, W., Yang, Z., Duan, X., Jia, D.: Mater J. Chem. Phys. 129, 331 (2011)

    Article  Google Scholar 

  8. Rabina, O., Lin, Y.M., Dresselhaus, M.S.: Appl. Phys. Lett. 79, 81 (2001)

    Article  ADS  Google Scholar 

  9. Takeuchi, T.: Mater. Trans. 50, 2359 (2009)

    Article  Google Scholar 

  10. Aliabad, H.A.R., Ghazanfari, M., Ahmad, I., Saeed, M.A.: Comput. Mater. Sci. 65, 509 (2012)

    Article  Google Scholar 

  11. Blake, N.P., Latturner, S., Bryan, J.D., Stucky, G.D., Metiu, H.: J. Chem. Phys. 115, 8060 (2001)

    Article  ADS  Google Scholar 

  12. Gupta, D.C., Ghosh, S.: J. Supercond. Novel Magn., 1 (2017)

  13. Harman, T.C., Taylor, P.J., Walsh, M.P., LaForge, B.E.: Science 297, 2229 (2002)

    Article  ADS  Google Scholar 

  14. Matsubara, I., Funahashi, R., Takeuchi, T., Sodeoka, S.: Appl. Phys. Lett. 90, 462 (2001)

    Google Scholar 

  15. Shin, W., Murayama, N., Ikeda, K., Sago, S.: J. Power Sources 103, 80 (2001)

    Article  ADS  Google Scholar 

  16. Terasaki, I., Sasago, Y., Uchinokura, K.: Phys. Rev. B 56, 12685 (1997)

    Article  ADS  Google Scholar 

  17. Maignan, A., Wang, L.B., Hebert, S., Pelloquin, D., Raveau, B.: Chem. Mater. 14, 1231 (2002)

    Article  Google Scholar 

  18. He, T., Huang, Q., Ramirez, A.P., Wang, Y., Regan, K.A., Rogado, N., Hayward, M.A., Haas, M.K., Slusky, J.S., Inumara, K., Zandbergen, H.W., Ong, N.P., Cava, R.J.: Nature 411, 54 (2001)

    Article  ADS  Google Scholar 

  19. Bilal, M., Ahmad, I., Rahnamaye-Aliabad, H. A., Jalali-Asadabadi, S.: Comput. Mater. Sci. 85, 310 (2014)

    Article  Google Scholar 

  20. Engel, E., Vosko, S.H.: Phys. Rev. B 47, 13164 (1993)

    Article  ADS  Google Scholar 

  21. Andersen, O.K.: Phys. Rev. B 12, 3060 (1975)

    Article  ADS  Google Scholar 

  22. Kohn, W., Sham, L.: Phys. Rev. B 140, A1133 (1965)

    Article  ADS  Google Scholar 

  23. Hohenberg, P., Kohn, W.: Phys. Rev. 136, B864 (1964)

    Article  ADS  Google Scholar 

  24. Bannikov, V.V., Shein, I.R., Ivanovskii, A.L.: Physica B 405, 4615 (2010)

    Article  ADS  Google Scholar 

  25. Madsen, G.K.H., Singh, D.J.: Comput. Phys. Commun. 175, 67 (2006)

    Article  ADS  Google Scholar 

  26. Scheidemantel, T.J., Ambrosch-Draxl, C., Thonhauser, T., Badding, J.V., Sofo, J.O.: Phys. Rev. B 68, 125210 (2003)

    Article  ADS  Google Scholar 

  27. Noda, Y., Kon, H., Furukawa, Y., Otsuka, N., Nishida, I.A., Masumoto, K.: Materials transactions. JIM 33, 845 (1992)

    Google Scholar 

  28. Slack, G.A.: Thermoelectric handbook. Edition. Rowe DM. Chemical Rubber company. Boca Raton, 407 (1995)

  29. Rabin, O., Yu-Ming, L., Dresselhaus, M.S.: Appl. Phys. Lett. 79, 81 (2001)

    Article  ADS  Google Scholar 

  30. Walia, S., Weber, R., Balendhran, S., Yao, D., Abrahamson, J.T., Zhuiykov, S., Bhaskaran, M., Sriram, S., Strano, M.S., Kalantar-zadeh, K.: Chem. Commun. 48, 7462 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Benstaali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benmalem, Y., Abbad, A., Benstaali, W. et al. Investigation of Transport Properties of Some Superconductor Nickel-Based Antiperovskite XNNi3 (X = Mg, Al, Cu, Zn, Ga, Ag, Cd, In, Sn, Sb, Pt and Pb). J Supercond Nov Magn 31, 3485–3501 (2018). https://doi.org/10.1007/s10948-018-4647-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4647-2

Keywords

Navigation