Skip to main content
Log in

Green synthesis strategy of chabazite membrane and its CO2/N2 separation performance

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

In this study, non-poisonous and eco-friendly raw chemicals were employed to synthesize a chabazite membrane by seed-induced secondary growth method. With an assistance of porous alumina ceramics support, the prepared membrane was utilized for excellent CO2/N2 separation. The results of structural and morphological characterization of the synthetic chabazite membrane signify that a dense and consistent membrane layer of chabazite was successfully formed on the surface of the alumina ceramic support. The single-component gas permeation experiment was carried out on the synthetic chabazite membrane, and the results showed that the calculated ideal CO2 and N2 separation coefficient reached 3.5. Whereas, the separation experiment of the mixed components showed the CO2 and N2 separation coefficient of 4.05 which might be due to the competition of diffusion between the mixed gas molecules and the selective adsorption characteristics of chabazite. At last, the separation stability experiments results show that the chabazite membrane prepared in this study owns excellent cycle stability and excellent separation performance. This demonstrates that chabazite membrane is an outstanding potential membrane for the separation of CO2 in industrial flue gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Z.Y. Yeo, T.L. Chew, P.W. Zhu, A.R. Mohamed, S.-P. Chai, J. Nat. Gas Chem. 21, 282 (2012)

    Article  CAS  Google Scholar 

  2. N.O. Chisholm, H.H. Funke, R.D. Noble, J.L. Falconer, J. Membr. Sci. 568, 17 (2018)

    Article  CAS  Google Scholar 

  3. Z. Qiao, S. Zhao, M. Sheng, J. Wang, S. Wang, Z. Wang, C. Zhong, M.D. Guiver, Nat. Mater. 18, 163 (2019)

    Article  CAS  Google Scholar 

  4. J.H. Lee, H.T. Kwon, S. Bae, J. Kim, J.H. Kim, Sep. Purif. Technol. 207, 427 (2018)

    Article  CAS  Google Scholar 

  5. X. Gu, J. Dong, T.M. Nenoff, Ind. Amp Eng. Chem. Res. 44, 937 (2005)

    Article  CAS  Google Scholar 

  6. J.H. Gong, C.H. Wang, Z.J. Bian, Y. Li, H.U. Jun, H.L. Liu, Acta Phys. Chim. Sin. 31, 1963 (2015)

    Article  CAS  Google Scholar 

  7. I. Kammakakam, H.W. Yoon, S.Y. Nam, H. Bum Park, T.H. Kim, J. Membr. Sci. 487, 90 (2015)

    Article  CAS  Google Scholar 

  8. S.T. Hwang, Korean J. Chem. Eng. 18, 775 (2001)

    Article  CAS  Google Scholar 

  9. M. Vinoba, M. Bhagiyalakshmi, Y. Alqaheem, A.A. Alomair, M.S. Rana, Sep. Purif. Technol. 188, 431 (2017)

    Article  CAS  Google Scholar 

  10. A.E. Amooghin, S. Mashhadikhan, H. Sanaeepur, A. Moghadassi, S. Ramakrishna, Prog. Mater. Sci. 102, 222 (2019)

    Article  Google Scholar 

  11. A. Brunetti, F. Scura, G. Barbieri, E. Drioli, J. Membr. Sci. 359, 115 (2010)

    Article  CAS  Google Scholar 

  12. H. Verweij, Curr. Opin. Chem. Eng. 1, 156 (2012)

    Article  CAS  Google Scholar 

  13. J. Langwaldt, Sep. Sci. Technol. 43, 2166 (2008)

    Article  CAS  Google Scholar 

  14. G.A. Nasser, O. Muraza, T. Nishitoba, Z. Malibari, T.K. Al-Shammari, T. Yokoi, Microporous Mesoporous Mater. 274, 277 (2019)

    Article  CAS  Google Scholar 

  15. T. Du, X. Fang, Y. Wei, J. Shang, B. Zhang, L. Liu, Energy Fuels 31, 4301 (2017)

    Article  CAS  Google Scholar 

  16. J. Shang, G. Li, R. Singh, Q. Gu, K.M. Nairn, T.J. Bastow, N. Medhekar, C.M. Doherty, A.J. Hill, J.Z. Liu, J. Am. Chem. Soc. 134, 19246 (2012)

    Article  CAS  Google Scholar 

  17. C. Sun, D.J. Srivastava, P.J. Grandinetti, P.K. Dutta, Microporous Mesoporous Mater. 230, 208 (2016)

    Article  CAS  Google Scholar 

  18. K. Kida, Y. Maeta, K. Yogo, J. Membr. Sci. 522, 363 (2017)

    Article  CAS  Google Scholar 

  19. Z. Bohström, K.P. Lillerud, Microporous Mesoporous Mater. 271, 295 (2018)

    Article  Google Scholar 

  20. C. Peng, Z. Liu, A. Horimoto, C. Anand, H. Yamada, K. Ohara, S. Sukenaga, M. Ando, H. Shibata, T. Takewaki, Microporous Mesoporous Mater. 255, 192 (2018)

    Article  CAS  Google Scholar 

  21. B. Liu, Y. Zheng, N. Hu, T. Gui, Y. Li, F. Zhang, R. Zhou, X. Chen, H. Kita, Microporous Mesoporous Mater. 196, 270 (2014)

    Article  CAS  Google Scholar 

  22. Y. Kunitake, T. Takata, Y. Yamasaki, N. Yamanaka, N. Tsunoji, Y. Takamitsu, M. Sadakane, T. Sano, Microporous Mesoporous Mater. 215, 58 (2015)

    Article  CAS  Google Scholar 

  23. E. Jang, S. Hong, E. Kim, N. Choi, S.J. Cho, J. Choi, J. Membr. Sci. 549, 46 (2018)

    Article  CAS  Google Scholar 

  24. K. Kida, Y. Maeta, K. Yogo, Sep. Purif. Technol. 197, 116 (2018)

    Article  CAS  Google Scholar 

  25. L. Yu, A. Holmgren, M. Zhou, J. Hedlund, J. Mater. Chem. Mater. Energy Sustain. 6, 6847 (2018)

    Article  CAS  Google Scholar 

  26. B. Liu, R. Zhou, K. Yogo, H. Kita, J. Membr. Sci. 573, 333 (2019)

    Article  CAS  Google Scholar 

  27. J.P.G. Villaluenga, A. Tabe-Mohammadi, J. Polym. Eng. 23, 209–223 (2003)

    Article  CAS  Google Scholar 

  28. N.A.A. Sani, W.J. Lau, A.F. Ismail, J. Polym. Eng. 34, 489 (2014)

    Article  CAS  Google Scholar 

  29. B. D. Freeman, Novel Nanocomposite Membrane Structures for H2 Separations (University of Texas at Austin (US), 2005).

  30. T. Burdyny, H. Struchtrup, Energy 35, 1884 (2010)

    Article  CAS  Google Scholar 

  31. H. Gong, W. Liu, L. Liu, N. Goyal, T. Du, J. Taiwan Inst. Chem. Eng. 103, 160 (2019)

    Article  CAS  Google Scholar 

  32. H. Aysan, S. Edebali, C. Ozdemir, M.C. Karakaya, N. Karakaya, Microporous Mesoporous Mater. 235, 78 (2016)

    Article  CAS  Google Scholar 

  33. M. Lee, S. Hong, D. Kim, E. Kim, K. Lim, J.C. Jung, H. Richter, J.-H. Moon, N. Choi, J. Nam, Acs Appl. Mater. Interfaces 11, 3946 (2019)

    Article  CAS  Google Scholar 

  34. W.M. Deen, M.P. Bohrer, N.B. Epstein, Aiche J. 27, 952–959 (1981)

    Article  CAS  Google Scholar 

  35. A. Markovi, D. Stoltenberg, D. Enke, E.U. Schlünder, A. Seidel-Morgenstern, J. Membr. Sci. 336, 32 (2009)

    Article  Google Scholar 

  36. S. Che, T. Du, S. Zhu, X. Fang, Y. Wang, J. Ceram. Soc. Jpn. 127, 606 (2019)

    Article  CAS  Google Scholar 

  37. S. Che, L.Y. Liu, T. Du, X. Fang, Res. Chem. Intermed. 43, 1783 (2017)

    Article  Google Scholar 

  38. J. Zhang, R. Singh, P.A. Webley, Microporous Mesoporous Mater. 111, 478 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (No. 51904073, No.22078054), National Key Research and Development Project (No. 2019YFC1905200), the Natural Science Foundation of Liaoning Province (No. 2020-BS-053), the Postdoctoral Research Foundation of Northeastern University in China (No. 20190304) and the Fundamental Research Funds for the Central Universities (N182508027).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liying Liu or Tao Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 202 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, H., Goyal, N., Liu, L. et al. Green synthesis strategy of chabazite membrane and its CO2/N2 separation performance. J Porous Mater 28, 1401–1410 (2021). https://doi.org/10.1007/s10934-021-01069-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-021-01069-1

Keywords

Navigation