Skip to main content
Log in

Brine evolution in two inland evaporative environments: influence of microbial mats in mineral precipitation

  • Original Paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

This paper gives new insight into the precipitation sequences in six playa basins that host microbial mats. The study basins are distributed across two evaporitic endorheic drainage systems located in the Central part of Spain with markedly different hydrochemistry and mineralogy. One group, in the north, consists of highly alkaline, brackish to saline lakes containing a high concentration of chloride with dominant carbonate over sulphates. A second group of lakes are mesosaline to hypersaline, with sulphate the dominant anion over chloride. Mineral assemblages identified in both contain several phases that provide evidence for mixed carbonate-sulphate precipitation pathways, in the north, and sulphate-dominated pathways in the south. Regardless of their ionic composition, saline lakes support thin veneers of microbial mats which, by integrating several lines of evidence (hydrochemical and physical analyses, statistical analyses of ions, mineralogical assemblages, textural relationships among mineral phases and microbial mats) are shown to modify the chemical behavior of the evaporitic sediment and promote the formation of carbonates and sulphates from Ca-poor waters with high Mg/Ca ratios. Geochemical changes induced in the environment surrounding the microorganism favor the nucleation of hydrated Mg-carbonates (hydromagnesite and nesquehonite), calcite and dolomite. Simultaneously, the microbial mats provide nucleation sites for gypsum crystals, where they are subjected to episodic stages of growth and dissolution due to saturation indices close to zero. In addition, the bubbles produced by the metabolic activities of microorganisms are shown to promote the precipitation of hydrated Mg-sulphates, despite permanent subsaturation levels. Although common in the studied playa basins, this effect has not been previously reported and is key to understanding sulphate behavior and distribution. Modern and natural evaporitic microbial environments are important analogs for understanding brine evolution and mineral precipitation pathways in shallow water settings that have existed since the Archean on Earth and perhaps on Mars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Arp G, Reimer A, Reitner J (1999) Calcification in cyanobacterial biofilms of alkaline salt lakes. Eur J Phycol 34:393–403

    Article  Google Scholar 

  • Braithwaite CJR, Zedef V (1994) Living hydromagnesite stromatolites from Turkey. Sediment Geol 92–1:1–5

    Article  Google Scholar 

  • Cabestrero Ó, García del Cura MA, Sanz-Montero ME (2013) Precipitación de sales en una laguna sulfatada magnésico-sódica (Lillo, Toledo): controles ambientales. Macla 17:27–28

    Google Scholar 

  • Cabestrero Ó, Sanz-Montero ME, García Del Cura MA (2014a) Precipitation of magnesium bearing-sulphates in saline lakes: influence of sedimentary structures and microbial processes. In: Proceedings of the 19th international sedimentological congress 2014. Geneva, pp 18–22

  • Cabestrero Ó, Arroyo-Rey X, García-Del-Cura MÁ, Sanz Montero ME (2014b) Formación de arcillas en lagunas sulfatadas efímeras (Lillo, Toledo). Macla. 19. In press

  • Cabestrero Ó, Sanz-Montero ME, Martin D (2015a) The behavior of the calcium ion in saline and alkaline lake complexes revealed by statistical techniques. US geological survey open-file report 2015–1092, pp 42–43

  • Cabestrero Ó, Arregui L, Sanz-Montero E, Serrano S (2015b) Biodiversity of protists and prokaryotes of two playa-lakes from Central Spain. Abstract book: VII European congress of protistology. Seville

  • Chafetz H, Rush PF, Utech NM (1991) Microenvironmental controls on mineralogy and habit of CaCO3 precipitates: an example from an active travertine system. Sedimentology 38:107–126

    Article  Google Scholar 

  • Chung FH (1974) Quantitative interpretation of X-ray diffraction patterns. I. Matrix flushing method for quantitative multicompetent analysis. J Appl Crystallogr 7–6D:519–931

    Article  Google Scholar 

  • Cirujano S, García P, Meco A, Fernández R (2007) Los carófitos ibéricos. Anales Jardín Botánico de Madrid 64:87–102

    Google Scholar 

  • Cody RD, Cody AM (1988) Gypsum nucleation and crystal morphology in analog saline terrestrial environments. J Sediment Petrol 58–2:247–255

    Google Scholar 

  • Comin FA, Alonso M (1988) Spanish salt lakes. Their chemistry and biota. Hydrobiologia 158:237–245

    Article  Google Scholar 

  • Crawley MJ (2012) The R book, 2nd edn. Wiley, New York

    Book  Google Scholar 

  • Della Porta C (2015) Carbonate build-ups in lacustrine, hydrothermal and fluvial settings: comparing depositional geometry, fabric and geochemical signature. Geol Soc Lond Spec Publ 418:17–68

    Article  Google Scholar 

  • Dixon W, Chiswell B (1996) Review of aquatic monitoring program design. Water Res 30:1935–1948

    Article  Google Scholar 

  • Eugster HP, Hardie LA (1978) Saline lakes. In: Lerman A (ed) lakes. Springer, New York, pp 237–293

    Chapter  Google Scholar 

  • Fernández-Escalante E (2005) Recarga artificial de acuíferos en cuencas fluviales: aspectos cualitatitvos y medioambientales. Criterios técnicos derivados de la experiencia en la Cu- beta de Santiuste, Segovia. Thesis 28.167. UCM, Spain

  • García-Del-Cura M, Calvo JP, Ordonez S, Jones BF, Cañaveras JC (2001) Petrographic and geochemical evidence for the formation of primary, bacterially induced lacustrine dolomite: la Roda ‘white earth’ (Pliocene, central Spain). Sedimentology 48–4:897–915

    Article  Google Scholar 

  • Guerrero MC, De Wit R (1989) Microbial mats in the inland saline lakes of Spain. Limnetica 8:197–204

    Google Scholar 

  • Hardie LA (1984) Evaporites: marine or non-marine. Am J Sci 284–3:193–240

    Article  Google Scholar 

  • Jagniecky E, Lowenstein TK, Jenkins DM, Demicco RV (2015) Eocene atmospheric CO2 from the nahcolite proxy. Geology 43:1075–1078

    Google Scholar 

  • Ortí F, Rosell L, Anadón P (2003) Deep to shallow lacustrine evaporites in the Libros Gypsum (southern Teruel Basin, Miocene, NE Spain): an occurrence of pelletal gypsum rhythmites. Sedimentology 50–2:361–386

    Article  Google Scholar 

  • Ortí F, Rosell L, Inglès-i-Urpinell M, Playà-i-Pous E (2007) Depositional models of lacustrine evaporites in the SE margin of the Ebro Basin, Paleogene, NE Spain. Geol Acta 5–1:19–34

    Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2). A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US geological survey water-resources investigations report. pp 99–4259

  • Power IM, Wilson SA, Thom JM, Dipple GM, Southam G (2007) Biologically induced mineralization of dypingite by cyanobacteria from an alkaline wetland near Atlin, British Columbia, Canada. Geochem Trans 8(1):8–13

    Article  Google Scholar 

  • Pueyo JJ, De la Peña JA (1991) Los lagos salinos Españoles: sedimentología, hidroquímica y diagenesis. In: Pueyo JJ (ed) Génesis de formaciones evaporíticas: Modelos Andinos e lbéricos. Publicacions de la Universitat de Barcelona, Estudi General, pp 163–192

  • Renaut RW (1994) Sedimentology and geochemistry of modern and ancient saline lakes: based on a symposium sponsored by SEPM. Society for Sedimentary Geology, University of California, USA

  • Rodríguez-Aranda JP, Calvo JP (1998) Trace fossils and rhizoliths as a tool for sedimentological and palaeoenvironmental analysis of ancient continental evaporite successions. Palaeogeogr Palaeoclimatol Palaeoecol 140–1:383–399

    Article  Google Scholar 

  • Rodríguez-Aranda JP, Sanz-Montero ME (2015) Tapices microbianos: los organismos que fabrican estromatolitos. Enseñanza de las Ciencias de la Tierra 23–2:206–217

    Google Scholar 

  • Rodríguez-Aranda JP, Sanz-Montero ME, Cabestrero Ó (2014) Burrowing beetles in saline lake shores: effects on the preservation of mat-related structures. In: Proceedings of the 19th international sedimentological congress 2014. Geneva, pp 18–22

  • Rosen MR (1994) Paleoclimate and basin evolution of Playa systems. US geological survey special paper 289

  • Sanz-Montero ME, Rodríguez-Aranda JP (2012) Magnesite formation by microbial activity: evidence from a Miocene hypersaline lake. Sediment Geol 263–264:6–15

    Article  Google Scholar 

  • Sanz-Montero ME, Rodríguez-Aranda JP (2013) The role of microbial mats in the movement of stones on playa lake surfaces. Sediment Geol 298:53–64

    Article  Google Scholar 

  • Sanz-Montero ME, Rodríguez-Aranda JP, Calvo JP (2006) Mediation of endoevaporitic microbial communities in early replacement of gypsum by dolomite. A case study from Miocene lake deposits of the Madrid Basin, Spain. J Sediment Res 76:1257–1266

    Article  Google Scholar 

  • Sanz-Montero ME, Rodríguez-Aranda JP, García Del Cura MA (2008) Dolomite–silica stromatolites in Miocene lacustrine deposits from the Duero Basin, Spain: the role of organotemplates in the precipitation of dolomite. Sedimentology 55–4:729–750

    Google Scholar 

  • Sanz-Montero ME, Rodríguez-Aranda JP, García-Del-Cura MA (2009) Bioinduced precipitation of barite and celestite in dolomite microbialites: examples from Miocene lacustrine sequences in the Madrid and Duero Basins, Spain. Sediment Geol 222–1:138–148

    Article  Google Scholar 

  • Sanz-Montero ME, Arroyo X, Cabestrero Ó, Calvo JP, Fernández-Escalante E, Fidalgo C, García-del-Cura MA, García-Avilés J, González-Martín JA, Rodríguez-Aranda JP, Rovira JV (2013a) Procesos de sedimentación y biomineralización en la laguna alcalina de las Eras (Humedal Coca-Olmedo). Geogaceta 53:97–100

    Google Scholar 

  • Sanz-Montero ME, Calvo JP, García del Cura MA, Ornosa C, Outerelo R, Rodríguez-Aranda JP (2013b) The rise of the diptera-microbial mat interactions during the Cenozoic: consequences for the sedimentary record of saline lakes. Terra Nova 25:465–471

    Article  Google Scholar 

  • Sanz-Montero ME, Cabestrero Ó, Rodríguez-Aranda JP (2013c) Hydromagnesite precipitation in microbial mats from a highly alkaline lake, Central Spain. Mineral Mag 77–5:2628

    Google Scholar 

  • Sanz-Montero ME, Cabestrero Ó, Rodríguez-Aranda JP (2015a) Sedimentary effects of flood-producing windstorms in playa lakes and their role in the movement of large rocks. Earth Surf Process Landf 40–7:864–875

    Article  Google Scholar 

  • Sanz-Montero ME, Cabestrero Ó, Rodríguez-Aranda JP (2015b) Gypsum microbialites and mat-related structures in shallow evaporitic lakes. Geological survey open-file report 2015–1092, pp 189–190

  • Sanz-Montero ME, Cabestrero Ó, Rodríguez-Aranda JP (2016) Comments on Racetrack playa: rocks moved by wind alone. Aeolian Res 20:196–197

    Article  Google Scholar 

  • Shuker DM (2012) Getting started with R: an introduction for biologists. Anim Behav 84–6:1597–1600

    Article  Google Scholar 

  • Thompson JB, Ferris FG (1990) Cyanobacterial precipitation of gypsum, calcite, and magnesite from natural alkaline lake water. Geology 18:995–998

    Article  Google Scholar 

  • Visscher PT, Reid RP, Bebout BM (2000) Microscale observations of sulfate reduction: correlation of microbial activity with lithified micritic laminae in modern marine stromatolites. Geology 28:919–922

    Article  Google Scholar 

  • Vogel MB, Des Marais DJ, Parenteau MN, Jahnke LL, Turk KA, Kubo MDY (2010) Biological influences on modern sulfates: textures and composition of gypsum deposits from Guerrero Negro, Baja California Sur, Mexico. Sediment Geol 223:265–280

    Article  Google Scholar 

  • Warren JK (2006) Evaporites: sediments, sources and hydrocarbons. Springer, Berlin

    Book  Google Scholar 

Download references

Acknowledgments

We dedicate this work to Beth Gierlowski-Kordesch, who provided much energy to the limnogeological research for many years. We wish to thank M. A. García-del-Cura, J. P. Rodríguez-Aranda for helping in the field and revising the manuscript, D. Martín for introducing the author in the usage of ‘R software’ and P. T. Visscher and J. García-Veigas for their suggestions and learnings. Careful review of an anonymous reviewer is also acknowledged. The research has been financed by the Spanish Ministry of Economy and Competitivy through Projects CGL2011-26781, CGL2015-66455-R and a grant given to O. C. BES-2012-054282. It is part of the scientific activities of Research Group UCM-910404.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Óscar Cabestrero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabestrero, Ó., Sanz-Montero, M.E. Brine evolution in two inland evaporative environments: influence of microbial mats in mineral precipitation. J Paleolimnol 59, 139–157 (2018). https://doi.org/10.1007/s10933-016-9908-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-016-9908-0

Keywords

Navigation