Skip to main content

Advertisement

Log in

Synthesis of Dual-Responsive Alginate-Inspired Hydrocomposites for the Absorption of Blue Methylene

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Dual-responsive hydrogel composites, hydrocomposites (HC), composed of magnetite particles and alginate, which undergo drastic changes in volume in response to pH and magnetic fields, were prepared and employed for the removal of methylene blue (MB) from the aqueous environment. The use of magnets allowed for the control of the MB absorption mechanism and the removal of HCs following their application in water, thereby preventing secondary contamination. The HC capacity for water absorption was found to be dependent on the amount of magnetite and could be altered with the application of a magnetic field. In a 25 mg/L MB solution at pH 6.3 and 8, 20 mg of HC removed 97.7% of MB. The presence of 1% magnetite (w/w) is sufficient for composites to be guided by magnetic stimuli, and the resulting material could be reused at least four times through a simple treatment process.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Ahmed EM (2015) Hydrogel: preparation, characterization and applications : a review. J Adv Res 6:105–121. https://doi.org/10.1016/j.jare.2013.07.006

    Article  CAS  PubMed  Google Scholar 

  2. Sampatrao V, Vyankatrao A, Jacky R (2016) Citric acid crosslinked cyclodextrin/hydroxypropylmethylcellulose hydrogel films for hydrophobic drug delivery. Int J Biol Macromol 93:75–86. https://doi.org/10.1016/j.ijbiomac.2016.08.072

    Article  CAS  Google Scholar 

  3. Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:24–46

    Article  Google Scholar 

  4. Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23. https://doi.org/10.1016/j.addr.2012.09.010

    Article  Google Scholar 

  5. Gupta P, Vermani K, Garg S (2002) Hydrogels : from controlled release to pH-responsive drug delivery. Drug Discov Today 7:569–579

    Article  CAS  Google Scholar 

  6. De Oliveira KAL, Sitta DLA, Guilherme MR, Muniz EC, Rubira AF (2017) Design of pH-responsive albumin-alginate hydrogels for drug delivery. J Control Release 259:e5–e195. https://doi.org/10.1016/j.jconrel.2017.03.043

    Article  Google Scholar 

  7. Lima DS, Tenório-neto ET, Lima-tenório MK, Guilherme MR, Scariot DB, Nakamura CV, Muniz EC, Rubira AF (2018) pH-responsive alginate-based hydrogels for protein delivery. J Mol Liq 262:29–36. https://doi.org/10.1016/j.molliq.2018.04.002

    Article  CAS  Google Scholar 

  8. Lima-tenório MK, Tenório-neto ET, Guilherme MR, Garcia FP, Nakamura CV, Pineda EAG, Rubira AF (2015) Water transport properties through starch-based hydrogel nanocomposites responding to both pH and a remote magnetic field. Chem Eng J 259:620–629. https://doi.org/10.1016/j.cej.2014.08.045

    Article  CAS  Google Scholar 

  9. Okay O (2000) Macroporous copolymer networks. Prog Polym Sci 25:711

    Article  CAS  Google Scholar 

  10. Kuang J, Yuk KY, Huh KM (2011) Polysaccharide-based superporous hydrogels with fast swelling and superabsorbent properties. Carbohydr Polym 83:284–290. https://doi.org/10.1016/j.carbpol.2010.07.052

    Article  CAS  Google Scholar 

  11. Pourjavadi A, Zeidabadi F, Barzegar S (2010) Alginate-based biodegradable superabsorbents as candidates for diclofenac sodium delivery systems. J Appl Polym Sci 118:2015–2023. https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  12. Chandrawati R (2016) Minireview enzyme-responsive polymer hydrogels for therapeutic delivery. Exp Biol Med. https://doi.org/10.1177/1535370216647186

    Article  Google Scholar 

  13. Gombotz WR, Wee SF (1998) Protein release from alginate matrices. Adv Drug Deliv Rev 31:267–285

    Article  CAS  Google Scholar 

  14. Draget KI (2016) Alginates: fundamental properties and food applications. Ref Modul Food Sci. https://doi.org/10.1016/B978-0-08-100596-5.03182-6

    Article  Google Scholar 

  15. Byrom D (1991) Biomaterials: novel materials from biological sources. Palgrave Macmillan, New York

    Book  Google Scholar 

  16. De Lima HHC, Kupfer VL, Moisés MP, Guilherme MR (2018) Bionanocomposites based on mesoporous silica and alginate for enhanced drug delivery. Carbohydr Polym 196:126–134. https://doi.org/10.1016/j.carbpol.2018.04.107

    Article  CAS  PubMed  Google Scholar 

  17. Panão CO, Campos ELS, Lima HHC, Rinaldi AW, Lima-tenório MK, Tenório-neto ET, Guilherme MR, Asefa T, Rubira AF (2019) Ultra-absorbent hybrid hydrogel based on alginate and SiO 2 microspheres: a high-water-content system for removal of methylene blue. J Mol Liq 276:204–213. https://doi.org/10.1016/j.molliq.2018.11.157

    Article  CAS  Google Scholar 

  18. Ito A, Shinkai M, Honda H, Kobayashi T (2005) Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100:1–11. https://doi.org/10.1263/jbb.100.1

    Article  CAS  PubMed  Google Scholar 

  19. Gao Y, Liu Y, Xu C (2014) Magnetic Nanoparticles for Biomedical Applications : From Diagnosis to Treatment to Regeneration. London. https://doi.org/10.1007/978-1-4471-4372-7

    Article  Google Scholar 

  20. Lu A, Salabas EL, Schüth F (2007) Magnetic nanoparticles : synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244. https://doi.org/10.1002/anie.200602866

    Article  CAS  Google Scholar 

  21. Hu X, Nian G, Liang X, Wu L, Yin T, Lu H, Qu S, Yang W (2019) Adhesive tough magnetic hydrogels with high Fe3O4 content. Appl Mater Interfaces 11:10292–10300. https://doi.org/10.1021/acsami.8b20937

    Article  CAS  Google Scholar 

  22. Li Y, Huang G, Zhang X, Li B, Chen Y, Lu T (2012) Magnetic hydrogels and their potential biomedical applications. Adv Funct Mater 23:660–672. https://doi.org/10.1002/adfm.201201708

    Article  CAS  Google Scholar 

  23. Wang ZJ, Zhu CN, Hong W, Wu ZL, Zheng Q (2017) Cooperative deformations of periodically patterned hydrogels. Sci Adv 3:1–8

    Google Scholar 

  24. Wu ZL, Moshe M, Greener J, Therien-aubin H, Nie Z, Sharon E, Kumacheva E (2013) Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses. Nat Commun 4:1–7. https://doi.org/10.1038/ncomms2549

    Article  CAS  Google Scholar 

  25. Mu K, Mohr H (1998) Hepatitis C and human immunodeficiency virus RNA degradation by methylene blue/light treatment of human plasma. J Med Virol 56:239–245

    Article  Google Scholar 

  26. Tretter L, Koml T (2017) Neuropharmacology Methylene blue stimulates substrate-level phosphorylation catalysed by succinyl-CoA ligase in the citric acid cycle. Neuropharmacology 2:1–12. https://doi.org/10.1016/j.neuropharm.2017.05.009

    Article  CAS  Google Scholar 

  27. Ferreira-strixino J (2017) Evaluation of methylene blue as photosensitizer in promastigotes of Leishmania major and Leishmania braziliensis. Photodiagn Photodyn Ther 18:325–330. https://doi.org/10.1016/j.pdpdt.2017.04.009

    Article  CAS  Google Scholar 

  28. Aspiroz C, Sevil M, Toyas C, Gilaberte Y (2017) Photodynamic therapy with methylene blue for skin ulcers infected with pseudomonas aeruginosa and Fusarium spp. Acta Dermosifiliogr 108:e45–e48. https://doi.org/10.1016/j.adengl.2017.05.010

    Article  CAS  Google Scholar 

  29. Ozal E, Kuralay E, Yildirim V, Kilic S, Bolcal C, Kucukarslan N, Gunay C, Demirkilic U, Tatar H (2005) Preoperative methylene blue administration in patients at high risk for vasoplegic syndrome. Ann Thorac Surg 79:1615–1619. https://doi.org/10.1016/j.athoracsur.2004.10.038

    Article  PubMed  Google Scholar 

  30. Leyh RG, Kofidis T, Struber M, Fischer S, Knobloch K, Hagl C, Simon AR, Haverich A (2003) Methylene blue: the drug of choice for catecholamine- refractory vasoplegia after cardiopulmonary bypass? J Thorac Cardiovasc Surg 125:1426–1431. https://doi.org/10.1016/S0022-5223(02)73284-4

    Article  CAS  PubMed  Google Scholar 

  31. Cowett RM, Hakanson DO, Ocon RW, Oh W (1976) Untoward neonatal effect of intraamniotic administration of methylene blue. Obstet Gynecol 48:74S-75S

    CAS  PubMed  Google Scholar 

  32. Crooks J (1982) Haemolytic jaundice in methylene blue after intra-amniotic injection of methylene blue. Arch Dis Child 57:872–873. https://doi.org/10.1136/adc.57.11.872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fish WH, Chazen EM (1992) Toxic effects of methylene blue on the fetus. Arch Dis Child 142:1412–1413

    Google Scholar 

  34. Plunkett GD (1973) Neonatal complications. Obstet Gynecol Int J 41:476–477

    Google Scholar 

  35. Porat R, Gilbert S, Magilner D (1996) Methylene blue-induced phototoxicity: an unrecognized complication. Pediatrics 97:717–721

    CAS  PubMed  Google Scholar 

  36. Serota FT, Bernbaum JC, Schwartz E (1979) The methylene-blue baby. Lancet 2:1142–1143

    Article  CAS  Google Scholar 

  37. Bi T (1989) The methylene blue baby. N Engl J Med 320:1756–1757

    Google Scholar 

  38. Vincer MJ, Allen AC, Evans JR, Nwaesei C, Stinson DA (1987) Methylene-blue-induced hemolytic anemia in a neonate. Can Med Assoc J 136:503–504

    CAS  Google Scholar 

  39. Gillaman PK (2006) Methylene blue implicated in potentially fatal serotonin toxicity. Anaesthesia 61:1007–1019

    Article  Google Scholar 

  40. Dewachter P, Mouton-Faivre C, Tréchot P, Lleu J-C, Mertes PM (2005) Severe anaphylactic shock with methylene blue instillation. Anesth Analg. https://doi.org/10.1213/01.ANE.0000153497.60047.80

    Article  PubMed  Google Scholar 

  41. Van Diepen S, Sobey A, Lewanczuk R, Mullen JC (2013) A case of acute respiratory distress syndrome responsive to methylene blue during a carcinoid crisis. Can J Anesth 60:1085–1088. https://doi.org/10.1007/s12630-013-0026-4

    Article  PubMed  Google Scholar 

  42. Chatterjee S, Chatterjee S, Chatterjee BP, Guha AK (2007) Adsorptive removal of congo red, a carcinogenic textile dye by chitosan hydrobeads: binding mechanism, equilibrium and kinetics. Colloids Surf A Biointerfaces 299:146–152. https://doi.org/10.1016/j.colsurfa.2006.11.036

    Article  CAS  Google Scholar 

  43. Mittal A, Mittal J, Malviya A, Kaur D, Gupta VK (2010) Adsorption of hazardous dye crystal violet from wastewater by waste materials. J Colloid Interface Sci 343:463–473. https://doi.org/10.1016/j.jcis.2009.11.060

    Article  CAS  PubMed  Google Scholar 

  44. Korsmeyer RW, Lustig SR, Nikolaos A (1986) Solute and penetrant diffusion in swellable polymers. I. Mathematical modeling. J Polym Sci Polym Phys Ed 24:395–408

    Article  CAS  Google Scholar 

  45. Lobo MS, Costa P (2001) Modeling and comparison of dissolution profiles. Eur J Pharm Sci 13:123–133

    Article  Google Scholar 

  46. Tang J, Tong Z, Xia Y, Liu M, Lv Z, Gao Y, Lu T, Xie S, Pei Y, Fangb D, Wang TJ (2018) Despite, Super tough magnetic hydrogels for remotely triggered shape morphing. J Mater Chem B 6:2713–2722. https://doi.org/10.1039/C8TB00568K

    Article  CAS  PubMed  Google Scholar 

  47. Copello GJ, Mebert AM, Raineri M, Pesenti MP, Diaz LE (2011) Removal of dyes from water using chitosan hydrogel/SiO2 and chitin hydrogel/SiO2 hybrid materials obtained by the sol – gel method. J Hazard Mater 186:932–939. https://doi.org/10.1016/j.jhazmat.2010.11.097

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding through Coordenação de Aperfeiçoamento Pessoal de Nível Superior (CAPES)—Brazil and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) – Brazil for the fellowships. A.F.R and M.R.G acknowledge the financial supports given by CNPq and ICETI, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos R. Guilherme.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Information 1 (DOCX 3745 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, P.G., Lima-Tenório, M.K., Tenório-Neto, E.T. et al. Synthesis of Dual-Responsive Alginate-Inspired Hydrocomposites for the Absorption of Blue Methylene. J Polym Environ 29, 1643–1650 (2021). https://doi.org/10.1007/s10924-020-01988-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01988-1

Keywords

Navigation