Skip to main content
Log in

Effect of Alkali Treatment on Mechanical and Morphological Properties of Pineapple Leaf Fibre/Polyester Composites

  • Original paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this study, our aim is to analyze the influence of fibre treatments and different fibre loading on mechanical, physical and chemical properties of pineapple leaf fibre reinforced polyester composites (PALF/PE). Fibre treatments were carried out with 1 N NaOH and KOH for 1 h. The untreated and treated PALF/PE composites were fabricated with 25 wt%, 35 wt% and 45 wt% fibre loadings by compression molding technique. Fourier Transform Infrared Spectroscopy (FTIR) was used to understand the effects of chemical treatment on PALF mechanical test results revealed that 45 wt% of PALF/PE composites treated with NaOH showed a 35% increase in tensile strength compared to untreated PALF/PE composites. The tensile modulus and the flexural module are also the highest at 45 wt% of KOH treated composites. The highest impact strength of 70 J/m was obtained for PALF/PE composites with NaOH treated fibres at 25% fibre loading. The results show that the fibre treatments in terms of the flexural and inter-laminar shear strength of composites were not effective. SEM of the tensile fractured specimen of PALF/PE composites revealed the changes in fibre characteristics due to the alkali treatment and less fibre pull-out at higher fibre loading. Overall we conclude that 1 N NaOH, 45 wt% treated PALF/PE composites satisfactorily and effectively improved both the mechanical and morphological properties. Obtained composites would be promising for construction materials, furniture and automotive components due to their superior strength and modulus at higher fibre loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sikdar S, Ostachowicz W (2019) Nondestructive analysis of core-junction and joint-debond effects in advanced composite structure. Polym Test 73:31–38. https://doi.org/10.1016/j.polymertesting.2018.11.011

    Article  CAS  Google Scholar 

  2. Sikdar S, Ostachowicz W (2018) Ultrasonic lamb wave-based debonding monitoring of advanced honeycomb sandwich composite structures. Strain 1–15. https://doi.org/10.1111/str.12302

    Article  Google Scholar 

  3. Rokbi M, Osmani H, Imad A, Benseddiq N (2011) Effect of chemical treatment on flexure properties of natural fiber-reinforced polyester composite. Procedia Eng 10:2092–2097. https://doi.org/10.1016/j.proeng.2011.04.346

    Article  CAS  Google Scholar 

  4. Annie Paul S, Boudenne A, Ibos L et al (2008) Effect of fiber loading and chemical treatments on thermophysical properties of banana fiber/polypropylene commingled composite materials. Compos Part A Appl Sci Manuf 39:1582–1588. https://doi.org/10.1016/j.compositesa.2008.06.004

    Article  CAS  Google Scholar 

  5. Lee S-Y, Chun S-J, Doh G-H et al (2009) Influence of chemical modification and filler loading on fundamental properties of bamboo fibers reinforced polypropylene composites. J Compos Mater 43:1639–1657. https://doi.org/10.1177/0021998309339352

    Article  CAS  Google Scholar 

  6. Senthilkumar K, Saba N, Rajini N et al (2018) Mechanical properties evaluation of sisal fibre reinforced polymer composites: a review. Constr Build Mater 174:713–729. https://doi.org/10.1016/j.conbuildmat.2018.04.143

    Article  CAS  Google Scholar 

  7. Santosha PVCRK, Gowda ASSS, Manikanth V (2018) Effect of fiber loading on thermal properties of banana and pineapple leaf fiber reinforced polyester composites. Mater Today Proc 5:5631–5635

    Article  CAS  Google Scholar 

  8. Chandrasekar M, Ishak MR, Sapuan SM et al (2017) A review on the characterisation of natural fibres and their composites after alkali treatment and water absorption. Plast Rubber Compos. https://doi.org/10.1080/14658011.2017.1298550

    Article  Google Scholar 

  9. Indra Reddy M, Anil Kumar M, Rama Bhadri Raju C (2018) Tensile and flexural properties of jute, pineapple leaf and glass fiber reinforced polymer matrix hybrid composites. In: Materials today: proceedings 5:458–462. https://doi.org/10.1016/j.matpr.2017.11.105

  10. Shahroze RM, Ishak MR, Sapuan M et al (2018) Effect of organo-modified nanoclay on the mechanical properties of sugar palm fiber-reinforced polyester composites. BioResources 13:7430–7444. https://doi.org/10.15376/biores.13.4.7430-7444

    Article  CAS  Google Scholar 

  11. Glória GO, Teles MCA, Lopes FPD et al (2017) Tensile strength of polyester composites reinforced with PALF. J Mater Res Technol. https://doi.org/10.1016/j.jmrt.2017.08.006

    Article  Google Scholar 

  12. Pavithran C, Mukherjee PS, Brahmakumar M, Damodaran AD (1987) Impact properties of natural fibre composites. J Mater Sci Lett 6:882–884. https://doi.org/10.1007/BF01729857

    Article  Google Scholar 

  13. George J, Bhagawan SS, Thomas S (1996) Thermogravimetric and dynamic mechanical thermal analysis of pineapple fibre reinforced polyethylene composites. J Therm Anal 47:1121–1140. https://doi.org/10.1007/BF01979452

    Article  CAS  Google Scholar 

  14. Vinod B, Sudev LJ (2013) Effect of fiber length on the tensile properties of PALF reinforced bisphenol composites. Int J Eng Bus Enterp Appl 2:158–162

    Google Scholar 

  15. Mohd Salit S, Abdan K (2010) Selected properties of hand-laid and compression molded pineapple leaf fiber (PALF)-reinforced vinyl ester composites. Int J Mech Mater Eng 5:68–73

    Google Scholar 

  16. Gloria GO, Altoé GR, Moraes YM et al (2015) Tensile properties of epoxy composites reinforced with continuous PALF fibers. In: Characterization of minerals, metals, and materials. Springer, Berlin, pp 139–144. https://doi.org/10.1007/978-3-319-48191-3_17

  17. Glória GO, Teles MCA, Neves ACC et al (2017) Bending test in epoxy composites reinforced with continuous and aligned PALF fibers. J Mater Res Technol 6:411–416. https://doi.org/10.1016/j.jmrt.2017.09.003

    Article  CAS  Google Scholar 

  18. Lopattananon N, Payae Y, Seadan M (2008) Influence of fiber modification on interfacial adhesion and mechanical properties of pineapple leaf fiber-epoxy composites. J Appl Polym Sci 110:433–443

    Article  CAS  Google Scholar 

  19. Ray D, Sarkar BK, Rana AK, Bose NR (2001) Effect of alkali treated jute fibres on composite properties. Bull Mater Sci 24:129–135

    Article  CAS  Google Scholar 

  20. Mishra S, Misra M, Tripathy SS et al (2001) Graft copolymerization of acrylonitrile on chemically modified sisal fibers. Macromol Mater Eng 286:107–113

    Article  CAS  Google Scholar 

  21. Joseph K, Thomast S (1996) Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites. Polymer 37:5139–5149. https://doi.org/10.1016/0032-3861(96)00144-9

    Article  CAS  Google Scholar 

  22. Sreekumar P, Thomas SP, Saiter JM et al (2009) Effect of fiber surface modification on the mechanical and water absorption characteristics of sisal/polyester composites fabricated by resin transfer molding. Compos Part A Appl Sci Manuf 40:1777–1784. https://doi.org/10.1016/j.compositesa.2009.08.013

    Article  CAS  Google Scholar 

  23. Haque R, Saxena M, Shit SC, Asokan P (2015) Fibre-matrix adhesion and properties evaluation of sisal polymer composite. Fibers Polym 16:146–152

    Article  CAS  Google Scholar 

  24. Manalo AC, Wani E, Zukarnain NA et al (2015) Effects of alkali treatment and elevated temperature on the mechanical properties of bamboo fibre-polyester composites. Compos Part B Eng 80:73–83. https://doi.org/10.1016/j.compositesb.2015.05.033

    Article  CAS  Google Scholar 

  25. Rajesh G, Siripurapu G, Lella A (2018) Evaluating tensile properties of successive alkali treated continuous pineapple leaf fiber reinforced polyester composites. Mater Today Proc 5:13146–13151

    Article  Google Scholar 

  26. Prasad GLE, Gowda BSK, Velmurugan R (2017) Comparative study of impact strength characteristics of treated and untreated sisal polyester composites. Procedia Eng 173:778–785. https://doi.org/10.1016/j.proeng.2016.12.096

    Article  CAS  Google Scholar 

  27. Devi LU, Bhagawan SS, Thomas S (1997) Mechanical properties of pineapple leaf fiber-reinforced polyester composites. J Appl Polym Sci 64:1739–1748. https://doi.org/10.1002/(SICI)1097-4628(19970531)64:9%3C1739::AID-APP10%3E3.0.CO;2-T

    Article  CAS  Google Scholar 

  28. Senthilkumar K, Saba N, Chandrasekar M et al (2019) Evaluation of mechanical and free vibration properties of the pineapple leaf fibre reinforced polyester composites. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2018.11.081

    Article  Google Scholar 

  29. Lopattananon N, Panawarangkul K, Sahakaro K, Ellis B (2006) Performance of pineapple leaf fiber-natural rubber composites: the effect of fiber surface treatments. J Appl Polym Sci 102:1974–1984. https://doi.org/10.1002/app.24584

    Article  CAS  Google Scholar 

  30. Dai D, Fan M (2010) Characteristic and performance of elementary hemp fibre. Mater Sci Appl 1:336

    CAS  Google Scholar 

  31. Huda MS, Drzal LT, Mohanty AK, Misra M (2008) Effect of chemical modifications of the pineapple leaf fiber surfaces on the interfacial and mechanical properties of laminated biocomposites. Compos Interfaces 15:169–191. https://doi.org/10.1163/156855408783810920

    Article  CAS  Google Scholar 

  32. Asim M, Jawaid M, Abdan K, Ishak MR (2016) Effect of alkali and silane treatments on mechanical and fibre-matrix bond strength of kenaf and pineapple leaf fibres. J Bionic Eng 13:426–435. https://doi.org/10.1016/S1672-6529(16)60315-3

    Article  Google Scholar 

  33. Abraham E, Deepa B, Pothan LA et al (2011) Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2011.06.034

    Article  Google Scholar 

  34. Mwaikambo LY, Tucker N, Clark AJ (2007) Mechanical properties of hemp-fibre-reinforced euphorbia composites. Macromol Mater Eng 292:993–1000

    Article  CAS  Google Scholar 

  35. Kumar K, Senthil I, Siva P, Jeyaraj JT, Winowlin Jappes SC, Amico and NR (2014) Synergy of fiber length and content on free vibration and damping behavior of natural fiber reinforced polyester composite beams. Mater Des 56:379–386

    Article  CAS  Google Scholar 

  36. Rojo E, Alonso MV, Oliet M et al (2015) Effect of fiber loading on the properties of treated cellulose fiber-reinforced phenolic composites. Compos Part B Eng 68:185–192. https://doi.org/10.1016/j.compositesb.2014.08.047

    Article  CAS  Google Scholar 

  37. Sepe R, Bollino F, Boccarusso L, Caputo F (2018) Influence of chemical treatments on mechanical properties of hemp fiber reinforced composites. Compos Part B Eng 133:210–217. https://doi.org/10.1016/j.compositesb.2017.09.030

    Article  CAS  Google Scholar 

  38. Asumani OML, Reid RG, Paskaramoorthy R (2012) Author’ s personal copy Composites: Part A The effects of alkali–silane treatment on the tensile and flexural properties of short fibre non-woven kenaf reinforced polypropylene composites. Compos Part A Appl Sci Manuf 43:1431–1440

    Article  CAS  Google Scholar 

  39. Herrera-Franco PJ, Valadez-González A (2004) Mechanical properties of continuous natural fibre-reinforced polymer composites. Compos Part A Appl Sci Manuf 35:339–345. https://doi.org/10.1016/j.compositesa.2003.09.012

    Article  CAS  Google Scholar 

  40. Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15:25–33. https://doi.org/10.1007/s10924-006-0042-3

    Article  CAS  Google Scholar 

  41. Harish S, Michael DP, Bensely A (2009) Mechanical property evaluation of natural fiber coir composite. Mater Charact 60:44–49. https://doi.org/10.1016/j.matchar.2008.07.001

    Article  CAS  Google Scholar 

  42. Mwaikambo LY, Ansell MP (2002) Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci 84:2222–2234

    Article  CAS  Google Scholar 

  43. Hossain KaH, Khan M, Khan M R a (2009) Mechanical properties of the coir fiber-reinforced polypropylene composites: effect of the incorporation of jute fiber. J Compos Mater 44:401–416. https://doi.org/10.1177/0021998309344647

    Article  CAS  Google Scholar 

  44. Punyamurthy R, Sampathkumar D, Ranganagowda RPG et al (2017) Mechanical properties of abaca fiber reinforced polypropylene composites: effect of chemical treatment by benzenediazonium chloride. J King Saud Univ Eng Sci 29:289–294. https://doi.org/10.1016/j.jksues.2015.10.004

    Article  Google Scholar 

  45. Ozturk S (2010) Effect of fiber loading on the mechanical properties of kenaf and fiberfrax fiber-reinforced phenol-formaldehyde composites. J Compos Mater 44:2265–2288. https://doi.org/10.1177/0021998310364265

    Article  CAS  Google Scholar 

  46. Murali Mohan Rao K, Mohana Rao K, Ratna Prasad AV (2010) Fabrication and testing of natural fibre composites: vakka, sisal, bamboo and banana. Mater Des 31:508–513. https://doi.org/10.1016/j.matdes.2009.06.023

    Article  CAS  Google Scholar 

  47. Mahato K, Goswami S, Ambarkar A (2014) Morphology and mechanical properties of sisal fibre/vinyl ester composites. Fibers Polym 15:1310–1320

    Article  CAS  Google Scholar 

  48. Pappu A, Saxena M, Thakur VK et al (2016) Facile extraction, processing and characterization of biorenewable sisal fibers for multifunctional applications. J Macromol Sci Part A 53:424–432

    Article  CAS  Google Scholar 

  49. Sathishkumar T, Navaneethakrishnan P, Shankar S, Kumar J (2012) Mechanical properties of randomly oriented snake grass fiber with banana and coir fiber-reinforced hybrid composites. J Compos Mater. https://doi.org/10.1177/0021998312454903

    Article  Google Scholar 

  50. Zhu J, Zhu H, Immonen K et al (2015) Improving mechanical properties of novel flax/tannin composites through different chemical treatments. Ind Crops Prod 67:346–354

    Article  CAS  Google Scholar 

  51. Ahmed KS, Vijayarangan S (2008) Tensile, flexural and interlaminar shear properties of woven jute and jute-glass fabric reinforced polyester composites. J Mater Process Technol 207:330–335

    Article  CAS  Google Scholar 

  52. Mishra S, Mohanty a K, Drzal LT et al (2003) Studies on mechanical performance of biofibre/glass reinforced polyester hybrid composites. Compos Sci Technol 63:1377–1385. https://doi.org/10.1016/S0266-3538(03)00084-8

    Article  CAS  Google Scholar 

  53. Goud G, Rao RN (2011) Effect of fibre content and alkali treatment on mechanical properties of Roystonea regia-reinforced epoxy partially biodegradable composites. Bull Mater Sci 34:1575–1581

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their gratitude to the “Kalasalingam Academy of Research and Education, Tamilnadu, India and Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia” for their collaborations and financial support from HiCOE Grant No. 6963108. This research was partly supported by the King Mongkut’s University of Technology North Bangkok through the Post-Doc Program (Grant No. KMUTNB-61-Post-003 and KMUTNB-62-KNOW-13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jawaid.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senthilkumar, K., Rajini, N., Saba, N. et al. Effect of Alkali Treatment on Mechanical and Morphological Properties of Pineapple Leaf Fibre/Polyester Composites. J Polym Environ 27, 1191–1201 (2019). https://doi.org/10.1007/s10924-019-01418-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01418-x

Keywords

Navigation