Skip to main content
Log in

Elastic Optical Networking for 5G Transport

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

The 5th generation of mobile communication system (5G) is expected to change the communication landscape by 2020. 5G will provide a unified platform for connecting billions of devices and offering a wide range of networking services. The use-cases and the disruptive capabilities of 5G will bring forward a number of challenges for both the wireless radio and wired part of a 5G network. The wired transport network, typically consisting of access and core domains, has to adopt tailored networking solutions satisfying differentiated quality of service requirements as envisioned in 5G. While optical transport technology has been prevalent in core segments, it is also perceived as a key enabler for the 5G access networks due to its very high capacity and low transmission delay. However, existing optical transport technologies are hindered by inflexibility, poor resource utilization, and high costs, and cannot be stretched to 5G scale. On the other hand, optical technologies have been going through a paradigm shift towards an elastic optical network that is considered as the promising solution for future high-speed transport networks. This paper outlines key challenges for the design of a flexible, programmable, and dynamic 5G transport network, and discusses the enabling technologies and directions to address these challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Agyapong, P.K., Iwamura, M., Staehle, D., Kiess, W., Benjebbour, A.: Design considerations for a 5g network architecture. IEEE Commun. Mag. 52(11), 65–75 (2014)

    Article  Google Scholar 

  2. G. P. A. W.: Group, view on 5g architecture. White Paper, July (2016)

  3. Iwamura, M.: NGMN view on 5g architecture. In: 2015 IEEE 81st Vehicular Technology Conference (VTC Spring). IEEE, pp. 1–5 (2015)

  4. Chowdhury, N.M.M.K., Boutaba, R.: A survey of network virtualization. Comput. Netw. 54(5), 862–876 (2010)

    Article  MATH  Google Scholar 

  5. Rost, P., Banchs, A., Berberana, I., Breitbach, M., Doll, M., Droste, H., Mannweiler, C., Puente, M.A., Samdanis, K., Sayadi, B.: Mobile network architecture evolution toward 5G. IEEE Commun. Mag. 54(5), 84–91 (2016)

    Article  Google Scholar 

  6. Katsalis, K., Nikaein, N., Schiller, E., Favraud, R., Braun, T.I.: 5G architectural design patterns. In: 2016 IEEE International Conference on Communications Workshops (ICC). IEEE, pp. 32–37 (2016)

  7. Tipmongkolsilp, O., Zaghloul, S., Jukan, A.: The evolution of cellular backhaul technologies: current issues and future trends. IEEE Commun. Surv. Tutor. 13(1), 97–113 (2011)

    Article  Google Scholar 

  8. Dixit, S.: IP over WDM: Building the Next-Generation Optical Internet. Wiley, New York (2004)

    Google Scholar 

  9. Liu, K .H.: IP over WDM. Wiley, New York (2003)

    Google Scholar 

  10. Skubic, B., Bottari, G., Öhlén, P., Cavaliere, F.: The role of DWDM for 5G transport. In: 2014 European Conference on Optical Communication (ECOC). IEEE, pp. 1–3 (2014)

  11. Fiorani, M., Monti, P., Skubic, B., Mårtensson, J., Valcarenghi, L., Castoldi, P., Wosinska, L.: Challenges for 5G transport networks. In: 2014 IEEE International Conference on Advanced Networks and Telecommuncations Systems (ANTS). IEEE, pp. 1–6 (2014)

  12. Zhang, J., Ji, Y., Zhang, J., Gu, R., Zhao, Y., Liu, S., Xu, K., Song, M., Li, H., Wang, X.: Baseband unit cloud interconnection enabled by flexible grid optical networks with software defined elasticity. IEEE Commun. Mag. 53(9), 90–98 (2015)

    Article  Google Scholar 

  13. Jaber, M., Imran, M.A., Tafazolli, R., Tukmanov, A.: 5G backhaul challenges and emerging research directions: a survey. IEEE Access 4, 1743–1766 (2016)

    Article  Google Scholar 

  14. Hossain, E., Hasan, M.: 5G cellular: key enabling technologies and research challenges. IEEE Instrum. Meas. Mag. 18(3), 11–21 (2015)

    Article  Google Scholar 

  15. Kempf, J., Johansson, B., Pettersson, S., Lüning, H., Nilsson, T.: Moving the mobile evolved packet core to the cloud. In: 2012 IEEE 8th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). IEEE, pp. 784–791 (2012)

  16. Chen, Z., Zhao, Y., Yang, H., Zhang, G., Zhang, J.: Optical resource allocation for dynamic traffic in mobile core networks based on software defined optical networks. In: 2015 European Conference on Optical Communication (ECOC). IEEE, pp. 1–3 (2015)

  17. Peng, S., Nejabati, R., Channegowda, M., Simeonidou, D.: Application-aware and adaptive virtual data centre infrastructure provisioning over elastic optical OFDM networks. In: 39th European Conference and Exhibition on Optical Communication (ECOC 2013). IET, pp. 1–3 (2013)

  18. Skubic, B., Bottari, G., Rostami, A., Cavaliere, F., Öhlén, P.: Rethinking optical transport to pave the way for 5G and the networked society. J. Lightwave Technol. 33(5), 1084–1091 (2015)

    Article  Google Scholar 

  19. Öhlén, P., Skubic, B., Rostami, A., Fiorani, M., Monti, P., Ghebretensaé, Z., Mårtensson, J., Wang, K., Wosinska, L.: Data plane and control architectures for 5G transport networks. J. Lightwave Technol. 34(6), 1501–1508 (2016)

    Article  Google Scholar 

  20. Musumeci, F., Bellanzon, C., Carapellese, N., Tornatore, M., Pattavina, A., Gosselin, S.: Optimal BBU placement for 5G C-RAN deployment over WDM aggregation networks. J. Lightwave Technol. 34(8), 1963–1970 (2016)

    Article  Google Scholar 

  21. Tomkos, I., Azodolmolky, S., Sole-Pareta, J., Careglio, D., Palkopoulou, E.: A tutorial on the flexible optical networking paradigm: state of the art, trends, and research challenges. Proc. IEEE 102(9), 1317–1337 (2014)

    Article  Google Scholar 

  22. Chatterjee, B.C., Sarma, N., Oki, E.: Routing and spectrum allocation in elastic optical networks: a tutorial. IEEE Commun. Surv. Tutor. 17(3), 1776–1800 (2015)

    Article  Google Scholar 

  23. Zhang, G., De Leenheer, M., Morea, A., Mukherjee, B.: A survey on OFDM-based elastic core optical networking. IEEE Commun. Surv. Tutor. 15(1), 65–87 (2013)

    Article  Google Scholar 

  24. Jinno, M., Sone, Y., Takara, H., Hirano, A., Yonenaga, K., Kawai, S.: IP traffic offloading to elastic optical layer using multi-flow optical transponder. In: European Conference and Exposition on Optical Communications. Optical Society of America, 2011, pp. Mo–2 (2011)

  25. Mayoral, A., López, V., de Dios, O.G., Fernandez-Palacios, J.P.: Migration steps toward flexi-grid networks. J. Opt. Commun. Netw. 6(11), 988–996 (2014)

    Article  Google Scholar 

  26. Tomkos, I., Palkopoulou, E., Angelou, M.: A survey of recent developments on flexible/elastic optical networking. In: 2012 14th International Conference on Transparent Optical Networks (ICTON). IEEE, pp. 1–6 (2012)

  27. ITUT. Spectral grids for WDM applications: DWDM frequency grid [Internet]. https://www.itu.int/rec/T-REC-G.694.1/en. (2002) Updated: 2012. Accessed 24 June 2017

  28. Bórquez-Paredes, D., Beghelli, A., Leiva, A.: Network virtualization over elastic optical networks: a survey of allocation algorithms. In: Optical Fiber and Wireless Communications. InTech (2017)

  29. Gkamas, V., Christodoulopoulos, K., Varvarigos, E.: A joint multi-layer planning algorithm for IP over flexible optical networks. J. Lightwave Technol. 33(14), 2965–2977 (2015)

    Google Scholar 

  30. Mukherjee, B.: WDM optical communication networks: progress and challenges. IEEE J. Sel. Areas Commun. 18(10), 1810–1824 (2000)

    Article  Google Scholar 

  31. Basch, E.B., Egorov, R., Gringeri, S., Elby, S.: Architectural tradeoffs for reconfigurable dense wavelength-division multiplexing systems. IEEE J. Sel. Top. Quantum Electron. 12(4), 615–626 (2006)

    Article  Google Scholar 

  32. Keiser, G.E.: A review of wdm technology and applications. Opt. Fiber Technol. 5(1), 3–39 (1999)

    Article  Google Scholar 

  33. Gerstel, O., Jinno, M., Lord, A., Yoo, S.B.: Elastic optical networking: A new dawn for the optical layer? IEEE Commun. Mag. 50(2), 12–20 (2012)

    Article  Google Scholar 

  34. Nag, A., Tornatore, M., Mukherjee, B.: Optical network design with mixed line rates and multiple modulation formats. J. Lightwave Technol. 28(4), 466–475 (2010)

    Article  Google Scholar 

  35. Sköldström, P., Junique, S.: Application-centric networks and the future 5G transport. In: 2015 17th International Conference on Transparent Optical Networks (ICTON). IEEE, pp. 1–4 (2015)

  36. Sambo, N., Castoldi, P., D’Errico, A., Riccardi, E., Pagano, A., Moreolo, M.S., Fabrega, J.M., Rafique, D., Napoli, A., Frigerio, S., Salas, E.H.: Next generation sliceable bandwidth variable transponders. IEEE Commun. Mag. 53(2), 163–171 (2015)

    Article  Google Scholar 

  37. Amaya, N., Zervas, G.S., Rofoee, B.R., Irfan, M., Qin, Y., Simeonidou, D.: Field trial of a 1.5 Tb/s adaptive and gridless OXC supporting elastic 1000-fold all-optical bandwidth granularity. Opt. Express 19(26), B235–B241 (2011)

    Article  Google Scholar 

  38. Christodoulopoulos, K., Tomkos, I., Varvarigos, E.: Elastic bandwidth allocation in flexible OFDM-based optical networks. J. Lightwave Technol. 29(9), 1354–1366 (2011)

    Article  Google Scholar 

  39. Jinno, M., Takara, H., Sone, Y., Yonenaga, K., Hirano, A.: Multiflow optical transponder for efficient multilayer optical networking. IEEE Commun. Mag. 50(5), 56–65 (2012)

    Article  Google Scholar 

  40. Tanaka, T., Hirano, A., Jinno, M.: Advantages of IP over elastic optical networks using multi-flow transponders from cost and equipment count aspects. Opt. Express 22(1), 62–70 (2014)

    Article  Google Scholar 

  41. Klekamp, A., Rival, O., Morea, A., Dischler, R., Buchali, F.: Transparent WDM network with bitrate tunable optical OFDM transponders. In: National Fiber Optic Engineers Conference. Optical Society of America, 2010, p. NTuB5 (2010)

  42. Kozicki, B., Takara, H., Yoshimatsu, T., Yonenaga, K., Jinno, M.: Filtering characteristics of highly-spectrum efficient spectrum-sliced elastic optical path (slice) network. In: National Fiber Optic Engineers Conference. Optical Society of America, 2009, p. JWA43 (2009)

  43. Klinkowski, M., Ruiz, M., Velasco, L., Careglio, D., Lopez, V., Comellas, J.: Elastic spectrum allocation for time-varying traffic in flexgrid optical networks. IEEE J. Sel. Areas Commun. 31(1), 26–38 (2013)

    Article  Google Scholar 

  44. Zhang, G., De Leenheer, M., Mukherjee, B.: Optical traffic grooming in OFDM-based elastic optical networks. J. Opt. Commun. Netw. 4(11), B17–B25 (2012)

    Article  Google Scholar 

  45. Cvijetic, N.: Optical network evolution for 5G mobile applications and SDN-based control. In: 2014 16th International on Telecommunications Network Strategy and Planning Symposium (Networks). IEEE, pp. 1–5 (2014)

  46. Zhang, J., Yu, H., Ji, Y., Li, H., Yu, X., Zhao, Y., Li, H.: Demonstration of radio and optical orchestration for improved coordinated multi-point (comp) service over flexible optical fronthaul transport networks. In: Optical Fiber Communication Conference. Optical Society of America, pp. M2I–2 (2017)

  47. Asensio, A., Saengudomlert, P., Ruiz, M., Velasco, L.: Study of the centralization level of optical network-supported cloud ran. In: 2016 International Conference on Optical Network Design and Modeling (ONDM). IEEE, pp. 1–6 (2016)

  48. Raza, M.R., Fiorani, M., Rostami, A., Ohlen, P., Wosinska, L., Monti, P.: Benefits of programmability in 5G transport networks. In: Optical Fiber Communication Conference. Optical Society of America, 2017, pp. M2G–3 (2017)

  49. Jungnickel, V., Habel, K., Parker, M., Walker, S., Bock, C., Riera, J.F., Marques, V., Levi, D.: Software-defined open architecture for front-and backhaul in 5G mobile networks. In: 2014 16th International Conference on Transparent Optical Networks (ICTON). IEEE, pp. 1–4 (2014)

  50. Andrews, J.G., Buzzi, S., Choi, W., Hanly, S.V., Lozano, A., Soong, A.C., Zhang, J.C.: What will 5G be? IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014)

    Article  Google Scholar 

  51. Roy, S., Malik, A., Deore, A., Ahuja, S., Turkcu, O., Hand, S., Melle, S.: Evaluating efficiency of multi-layer switching in future optical transport networks. In: Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), 2013. IEEE, pp. 1–3 (2013)

  52. Paul, U., Subramanian, A.P., Buddhikot, M.M., Das, S.R.: Understanding traffic dynamics in cellular data networks. In: INFOCOM, 2011 Proceedings, IEEE. pp. 882–890 (2011)

  53. Said, S.B.H., Sama, M.R., Guillouard, K., Suciu, L., Simon, G., Lagrange, X., Bonnin, J.-M.: New control plane in 3GPP LTE/EPC architecture for on-demand connectivity service. In: 2013 IEEE 2nd International Conference on Cloud Networking (CloudNet). IEEE, pp. 205–209 (2013)

  54. Taleb, T., Corici, M., Parada, C., Jamakovic, A., Ruffino, S., Karagiannis, G., Magedanz, T.: EASE: EPC as a service to ease mobile core network deployment over cloud. IEEE Netw. 29(2), 78–88 (2015)

    Article  Google Scholar 

  55. Basta, A., Kellerer, W., Hoffmann, M., Hoffmann, K., Schmidt, E.-D.: A virtual SDN-enabled LTE EPC architecture: a case study for s-/p-gateways functions. In: 2013 IEEE SDN for Future Networks and Services (SDN4FNS). IEEE, pp. 1–7 (2013)

  56. Basta, A., Kellerer, W., Hoffmann, M., Morper, H. J., Hoffmann, K.: Applying NFV and SDN to LTE mobile core gateways, the functions placement problem. In: Proceedings of the 4th workshop on All things cellular: operations, applications, & challenges. ACM, pp. 33–38 (2014)

  57. Sama, M.R., Contreras, L.M., Kaippallimalil, J., Akiyoshi, I., Qian, H., Ni, H.: Software-defined control of the virtualized mobile packet core. IEEE Commun. Mag. 53(2), 107–115 (2015)

    Article  Google Scholar 

  58. Jin, X., Li, L. E., Vanbever, L., Rexford, J.: Softcell: Scalable and flexible cellular core network architecture. In: Proceedings of the Ninth ACM Conference on Emerging Networking Experiments and Technologies. ACM, pp. 163–174 (2013)

  59. Ghani, N., Dixit, S., Wang, T.-S.: On IP-over-WDM integration. IEEE Commun. Mag. 38(3), 72–84 (2000)

    Article  Google Scholar 

  60. Gringeri, S., Bitar, N., Xia, T.J.: Extending software defined network principles to include optical transport. IEEE Commun. Mag. 51(3), 32–40 (2013)

    Article  Google Scholar 

  61. Channegowda, M., Nejabati, R., Fard, M.R., Peng, S., Amaya, N., Zervas, G., Simeonidou, D., Vilalta, R., Casellas, R., Martínez, R., Muoz, R.: Experimental demonstration of an openflow based software-defined optical network employing packet, fixed and flexible dwdm grid technologies on an international multi-domain testbed. Opt. Express 21(5), 5487–5498 (2013)

    Article  Google Scholar 

  62. Bhaumik, P., Zhang, S., Chowdhury, P., Lee, S.-S., Lee, J.H., Mukherjee, B.: Software-defined optical networks (sdons): a survey. Photonic Netw. Commun. 28(1), 4–18 (2014)

    Article  Google Scholar 

  63. Zhao, Y., Chen, Z., Zhang, J., Wang, X.: Dynamic optical resource allocation for mobile core networks with software defined elastic optical networking. Opt. Express 24(15), 16659–16673 (2016)

    Article  Google Scholar 

  64. Kreutz, D., Ramos, F.M., Verissimo, P.E., Rothenberg, C.E., Azodolmolky, S., Uhlig, S.: Software-defined networking: a comprehensive survey. Proc. IEEE 103(1), 14–76 (2015)

    Article  Google Scholar 

  65. Ponzini, F., Giorgi, L., Bianchi, A., Sabella, R.: Centralized radio access networks over wavelength-division multiplexing: a plug-and-play implementation. IEEE Commun. Mag. 51(9), 94–99 (2013)

    Article  Google Scholar 

  66. Carapellese, N., Tornatore, M., Pattavina, A.: Placement of base-band units (BBUs) over fixed/mobile converged multi-stage WDM-PONs. In: 2013 17th International Conference on Optical Network Design and Modeling (ONDM). IEEE, pp. 246–251 (2013)

  67. Carapellese, N., Tornatore, M., Pattavina, A.: Energy-efficient baseband unit placement in a fixed/mobile converged wdm aggregation network. IEEE J. Sel. Areas Commun. 32(8), 1542–1551 (2014)

    Article  Google Scholar 

  68. Rostami, A., Wang, K., Ghebretensae, Z., Ohlen, P., Skubic, B.: First experimental demonstration of orchestration of optical transport, ran and cloud based on SDN. In: 2015 Optical Fiber Communications Conference and Exhibition (OFC) (2015)

  69. Markopoulou, A., Iannaccone, G., Bhattacharyya, S., Chuah, C.-N., Diot, C.: Characterization of failures in an IP backbone. In: INFOCOM 2004. Twenty-third Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 4. IEEE, pp. 2307–2317 (2004)

  70. Gill, P., Jain, N., Nagappan, N.: Understanding network failures in data centers: measurement, analysis, and implications. In: ACM SIGCOMM Computer Communication Review, 41(4) ACM, pp. 350–361 (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raouf Boutaba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boutaba, R., Shahriar, N. & Fathi, S. Elastic Optical Networking for 5G Transport. J Netw Syst Manage 25, 819–847 (2017). https://doi.org/10.1007/s10922-017-9434-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10922-017-9434-z

Keywords

Navigation