Skip to main content
Log in

Hyperspectral Imaging as a Non Destructive Technique to Control the Laser Cleaning of Graffiti on Granite

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

The progress of the laser cleaning of two graffiti paints on coarse-grained granite was in situ followed up by the hyperspectral imaging technique, through the calculation of a quantitative index based on a linear spectral mixture analysis model, which provided an estimation of the cleaning level attained along the process. The laser used was a nanosecond pulsed Nd:YVO\(_{4}\) source, at 355 nm wavelength and, in order to validate the results of laser cleaning, conventional analytical techniques as optical microscopy, scanning electron microscopy with energy dispersive X-ray spectrometry, Fourier transform infrared spectroscopy and spectrophotometer colour measurements were also implemented. The results indicated that hyperspectral imaging technique is a reliable tool to in situ control the process of laser cleaning of graffiti in coarse-grained granites in order to determine the laser scans enough to achieve the best possible cleaning without modifying the granitic substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sanmartín, P., Cappitelli, F., Mitchell, R.: Current methods of graffiti removal: a review. Constr. Build. Mater. 71, 363–374 (2014). doi:10.1016/j.conbuildmat.2014.08.093

    Article  Google Scholar 

  2. Ye, Y., Qi, Y., Yuan, X., Xiang, X., Wang, H., Zhou, W., et al.: Laser cleaning of contamination on sandstone surfaces in Yungang Grottoes. Opt. Int. J. Light Electron. Opt. 125, 3093–3097 (2014). doi:10.1016/j.ijleo.2014.01.016

    Article  Google Scholar 

  3. Ortiz, P., Antúnez, V., Ortiz, R., Martín, J.M., Gómez, M.A., Hortal, A.R., et al.: Comparative study of pulsed laser cleaning applied to weathered marble surfaces. Appl. Surf. Sci. 283, 193–201 (2013). doi:10.1016/j.apsusc.2013.06.081

    Article  Google Scholar 

  4. Gómez, C., Costela, A., García-Moreno, I., Sastre, R.: Comparative study between IR and UV laser radiation applied to the removal of graffitis on urban buildings. Appl. Surf. Sci. 252, 2782–2793 (2006). doi:10.1016/j.apsusc.2005.04.051

    Article  Google Scholar 

  5. López, A.J., Rivas, T., Lamas, J., Ramil, A., Yáñez, A.: Optimisation of laser removal of biological crusts in granites. Appl. Phys. A. 100, 733–739 (2010). doi:10.1007/s00339-010-5652-x

    Article  Google Scholar 

  6. Rivas, T., Pozo, S., Fiorucci, M.P., López, A.J., Ramil, A.: Nd:YVO4 laser removal of graffiti from granite. Influence of paint and rock properties on cleaning efficacy. Appl. Surf. Sci. 263, 563–572 (2012). doi:10.1016/j.apsusc.2012.09.110

    Article  Google Scholar 

  7. Fiorucci, M.P., López, A.J., Ramil, A., Pozo, S., Rivas, T.: Optimization of graffiti removal on natural stone by means of high repetition rate UV laser. Appl. Surf. Sci. 278, 268–272 (2013). doi:10.1016/j.apsusc.2012.10.092

    Article  Google Scholar 

  8. Pouli, P., Zafiropulos, V., Balas, C., Doganis, Y., Galanos, A.: Laser cleaning of inorganic encrustation on excavated objects: evaluation of the cleaning result by means of multi-spectral imaging. J. Cult. Herit. 4, 338–342 (2003). doi:10.1016/S1296-2074(02)01217-7

    Article  Google Scholar 

  9. Papadakis, V., Loukaiti, A., Pouli, P.: A spectral imaging methodology for determining on-line the optimum cleaning level of stonework. J. Cult. Herit. 11, 325–328 (2010). doi:10.1016/j.culher.2009.10.007

    Article  Google Scholar 

  10. Liang, H.: Advances in multispectral and hyperspectral imaging for archaeology and art conservation. Appl. Phys. A. 106, 309–323 (2012)

    Article  Google Scholar 

  11. Fischer, I., Kakoulli, C.: Multispectral and hyperspectral imaging technologies in conservation: current research and potential applications. Rev. Conserv. 7, 3–16 (2006)

    Google Scholar 

  12. Chang, C.-I.: Hyperspectral Data Processing: algorithm Design and Analysis. Wiley, New York (2013)

    Book  MATH  Google Scholar 

  13. Chang, C.-I.: Hyperspectral Imaging: techniques for Spectral Detection and Classification. Springer, New York (2003)

    Book  Google Scholar 

  14. Pozo-Antonio, J.S., Fiorucci, M.P., Ramil, A., López, A.J., Rivas, T.: Evaluation of the effectiveness of laser crust removal on granites by means of hyperspectral imaging techniques. Appl. Surf. Sci. 347, 832–838 (2015). doi:10.1016/j.apsusc.2015.04.182

    Article  Google Scholar 

  15. Fiorucci, M.P., López, A.J., Ramil, A., Pozo, S., Rivas, T.: Monitoring the laser cleaning of granites by means of multispectral image analysis. Proc. SPIE. 9286, 928610–928619 (2014). doi:10.1117/12.2063777

    Article  Google Scholar 

  16. Pozo-Antonio, J.S., Fiorucci, M.P., Rivas, T., Ramil, A., Barral, D.: Suitability of hyperspectral imaging technique to evaluate the effectiveness of the cleaning of a crustose lichen developed on granite. Appl. Phys. A 122(100), 1–9 (2016)

    Google Scholar 

  17. Pozo-Antonio, J.S., Ramil, A., Fiorucci, M.P., López, A.J., Rivas, T.: The use of hyperspectral imaging technique to detect the most suitable graffiti-cleaning procedure. Color Res. Appl. (2016) (in press)

  18. IGME (Instituto Geológico y Minero de España), Mapa geológico de España. Serie Magna, E1:50.000, 2nd ed, España (1985)

  19. Tu, T.M., Chen, C.H., Chang, C.I.: A posteriori least squares orthogonal subspace projection approach to desired signature extraction and detection. Geosci. Remote Sens. IEEE Trans. 35, 127–139 (1997)

    Article  Google Scholar 

  20. Socrates, G.: Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd edn. Wiley, New York (2001)

    Google Scholar 

  21. Schroeder, P.A.: Infrared Spectroscopy in clay science. In: Rule, S., Guggenheim, A. (eds.) C. Workink Lectures. Teaching Clay Science, vol. 11, pp. 181–206. Clay Minerals Society, Aurora (2002)

  22. Šontevska, V., Jovanovski, G., Makreski, P.: Minerals from Macedonia. Part XIX. Vibrational spectroscopy as identificational tool for some sheet silicate minerals. J. Mol. Struct. 834–836, 318–327 (2007). doi:10.1016/j.molstruc.2006.10.026

    Article  Google Scholar 

  23. Šontevska, V., Jovanovski, G., Makreski, P., Raškovska, A., Šoptrajanova, B.: Minerals from Macedonia. XXI. Vibrational spectroscopy as identificational tool for some phyllosilicate minerals. Acta Chim. Slov. 55, 757–766 (2008). http://search.ebscohost.com/login.aspx?direct=true&db=asx&AN=36085137&site=eds-live

  24. Prieto, F., Sanmartin, B., Silva, P., Verdú, B.: An effective method for characterizing colour by contact measurement in granitic rocks. Ópt. Pura Y Apl. 41, 389–396 (2008)

    Google Scholar 

  25. Carvalhão, M., Dionísio, A.: Evaluation of mechanical soft-abrasive blasting and chemical cleaning methods on alkyd-paint graffiti made on calcareous stones. J. Cult. Herit. 16, 579–590 (2015). doi:10.1016/j.culher.2014.10.004

    Article  Google Scholar 

  26. García, O., Malaga, K.: Definition of the procedure to determine the suitability and durability of an anti-graffiti product for application on cultural heritage porous materials. J. Cult. Herit. 13, 77–82 (2012). doi:10.1016/j.culher.2011.07.004

    Article  Google Scholar 

  27. Berns, R.: Billmeyer, Saltzman’s Principles of Color Technology, 3rd edn. Wiley, New York (2000)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish Research Project BIA2014-54186-R. M. P. Fiorucci’s work was partially financed by the Project: A- TEMPO Avances en tecnologías marinas: producción naval y Offshore. J. S. Pozo-Antonio was supported by a postdoctoral contract with the University of Vigo within the framework of the 2011–2015 Galician Plan for Research, Innovation and Growth (Plan I2C) for 2014. SEM and ATR-FTIR analysis were performed at the Centro de Apoyo Científico y Tecnológico a la Investigación—CACTI University of Vigo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Pozo-Antonio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pozo-Antonio, J.S., Fiorucci, M.P., Ramil, A. et al. Hyperspectral Imaging as a Non Destructive Technique to Control the Laser Cleaning of Graffiti on Granite. J Nondestruct Eval 35, 44 (2016). https://doi.org/10.1007/s10921-016-0361-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-016-0361-9

Keywords

Navigation