Skip to main content

Advertisement

Log in

Mesh-Robustness of an Energy Stable BDF2 Scheme with Variable Steps for the Cahn–Hilliard Model

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The two-step backward differential formula (BDF2) with unequal time-steps is applied to construct an energy stable convex-splitting scheme for the Cahn–Hilliard model. We focus on the numerical influences of time-step variations by using the recent theoretical framework with the discrete orthogonal convolution kernels. Some novel discrete convolution embedding inequalities with respect to the orthogonal convolution kernels are developed such that a concise \(L^2\) norm error estimate is established at the first time under an updated step-ratio restriction \(0 <r_k:=\tau _k/\tau _{k-1}\le r_{\mathrm {user}}\), where \(r_{\mathrm {user}}\) can be chosen by the user such that \(r_{\mathrm {user}}<4.864\). The stabilized convex-splitting BDF2 scheme is shown to be mesh-robustly convergent in the sense that the convergence constant (prefactor) in the error estimate is independent of the adjoint time-step ratios. The suggested method is proved to preserve a modified energy dissipation law at the discrete levels if \(0<r_k\le r_{\mathrm {user}}\), such that it is mesh-robustly stable in an energy norm. On the basis of ample tests on random time meshes, a useful adaptive time-stepping strategy is applied to efficiently capture the multi-scale behaviors and to accelerate the long-time simulation approaching the steady state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Becker, J.: A second order backward difference method with variable steps for a parabolic problem. BIT 38(4), 644–662 (1998)

    Article  MathSciNet  Google Scholar 

  2. Bertozzi, A., Esedoglu, S., Gillette, A.: Inpainting of binary images using the Cahn–Hilliard equation. IEEE Trans. Image Process. 16, 285–291 (2007)

    Article  MathSciNet  Google Scholar 

  3. Cheng, K., Feng, W., Wang, C., Wise, S.: An energy stable fourth order finite difference scheme for the Cahn–Hilliard equation. J. Comput. Appl. Math. 362, 574–595 (2019)

    Article  MathSciNet  Google Scholar 

  4. Cahn, J., Hilliard, J.: Free energy of a nonuniform system I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    Article  Google Scholar 

  5. Cristini, V., Li, X., Lowengrub, J., Wise, S.: Nonlinear simulations of solid tumor growth using a mixture model: invasion and branching. J. Math. Biol. 58, 723–763 (2009)

    Article  MathSciNet  Google Scholar 

  6. Cheng, K., Wang, C., Wise, S.: An energy stable BDF2 Fourier pseudo-spectral numerical scheme for the square phase field crystal equation. Comm. Comput. Phys. 26(5), 1335–1364 (2019)

    Article  MathSciNet  Google Scholar 

  7. Chen, W., Wang, C., Wang, X., Wise, S.: A linear iteration algorithm for a second-order energy stable scheme for a thin film model without slope selection. J. Sci. Comput. 59, 574–601 (2014)

    Article  MathSciNet  Google Scholar 

  8. Cheng, K., Wang, C., Wise, S., Yue, X.: A second-order, weakly energy-stable pseudo-spectral scheme for the Cahn–Hilliard equation and its solution by the homogeneous linear iteration method. J. Sci. Comput. 69, 1083–1114 (2016)

    Article  MathSciNet  Google Scholar 

  9. Chen, W., Wang, X., Yan, Y., Zhang, Z.: A second order BDF numerical scheme with variable steps for the Cahn–Hilliard equation. SIAM J. Numer. Anal. 57(1), 495–525 (2019)

    Article  MathSciNet  Google Scholar 

  10. Emmrich, E.: Stability and error of the variable two-step BDF for semilinear parabolic problems. J. Appl. Math. Comput. 19, 33–55 (2005)

    Article  MathSciNet  Google Scholar 

  11. Grigorieff, R.D.: Stability of multistep-methods on variable grids. Numer. Math. 42, 359–377 (1983)

    Article  MathSciNet  Google Scholar 

  12. Gomez, H., Hughes, T.: Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models. J. Comput. Phys. 230, 5310–5327 (2011)

    Article  MathSciNet  Google Scholar 

  13. Guo, J., Wang, C., Wise, S., Yue, X.: An \(H^2\) convergence of a second-order convex-spliting, finite difference scheme for the three-dimensional Cahn–Hilliard equation. Commun. Math. Sci. 14(2), 486–515 (2016)

    Google Scholar 

  14. He, Y., Liu, Y., Tang, T.: On large time-stepping methods for the Cahn–Hilliard equation. Appl. Numer. Math. 57, 616–628 (2007)

    Article  MathSciNet  Google Scholar 

  15. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems, Volume 8 of Springer Series in Computational Mathematics, 2nd edn. Springer, Berlin (1992)

    Google Scholar 

  16. Hosea, M.E., Shampine, L.F.: Analysis and implementation of TR-BDF2. Appl. Numer. Math. 20, 21–37 (1996)

    Article  MathSciNet  Google Scholar 

  17. Huang, J., Yang, C., Wei, Y.: Parallel energy-stable solver for a coupled Allen–Cahn and Cahn–Hilliard system. SIAM J. Sci. Comput. 42(5), C294–C312 (2020)

    Article  MathSciNet  Google Scholar 

  18. Liao, H.-L., Ji, B., Zhang, L.: An adaptive BDF2 implicit time-stepping method for the phase field crystal model. IMA J. Numer. Anal. 42(1), 649–679 (2022)

    Article  MathSciNet  Google Scholar 

  19. Liao, H.-L., Song, X., Tang, T., Zhou, T.: Analysis of the second order BDF scheme with variable steps for the molecular beam epitaxial model without slope selection. Sci. China Math. 64(5), 887–902 (2021)

    Article  MathSciNet  Google Scholar 

  20. Liao, H.-L., Tang, T., Zhou, T.: On energy stable, maximum-principle preserving, second order BDF scheme with variable steps for the Allen–Cahn equation. SIAM J. Numer. Anal. 58(4), 2294–2314 (2020)

    Article  MathSciNet  Google Scholar 

  21. Liao, H.-L., Tang, T., Zhou, T.: Positive definiteness of real quadratic forms resulting from variable-step approximations of convolution operators arXiv:2011.13383v1 (2020)

  22. Liao, H.-L., Zhang, Z.: Analysis of adaptive BDF2 scheme for diffusion equations. Math. Comput. 90, 1207–1226 (2020)

    Article  MathSciNet  Google Scholar 

  23. Nishikawa, H.: On large start-up error of BDF2. J. Comput. Phys. 392, 456–461 (2019)

    Article  MathSciNet  Google Scholar 

  24. Qiao, Z., Zhang, Z., Tang, T.: An adaptive time-stepping strategy for the molecular beam epitaxy models. SIAM J. Sci. Comput. 33(3), 1395–1414 (2011)

    Article  MathSciNet  Google Scholar 

  25. Shen, J., Tang, T., Wang, L.: Spectral Methods: Algorithms, Analysis and Applications. Springer, Berlin (2011)

    Book  Google Scholar 

  26. Shen, J., Wang, C., Wang, X., Wise, S.M.: Second-order convex-splitting schemes for gradient flows with Ehrlich–Schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal. 50(1), 105–125 (2012)

    Article  MathSciNet  Google Scholar 

  27. Tumolo, G., Bonaventura, L.: A semi-implicit, semi-Lagrangian, DG framework for adaptive numerical weather prediction. Q. J. R. Meteorol. Soc. (2015). https://doi.org/10.1002/qj.2544

    Article  Google Scholar 

  28. Wang, W., Chen, Y., Fang, H.: On the variable two-step IMEX BDF method for parabolic integro-differential equations with nonsmooth initial data arising in finance. SIAM J. Numer. Anal. 57(3), 1289–1317 (2019)

    Article  MathSciNet  Google Scholar 

  29. Wang, L., Yu, H.: On efficient second order stabilized semi-implicit schemes for the Cahn–Hilliard phase-field equation. J. Sci. Comput. 77, 1185–1209 (2018)

    Article  MathSciNet  Google Scholar 

  30. Xu, C., Tang, T.: Stability analysis of large time-stepping methods for epitaxial growth models. SIAM J. Numer. Anal. 44(4), 1759–1779 (2006)

    Article  MathSciNet  Google Scholar 

  31. Zhang, Z., Qiao, Z.: An adaptive time-stepping strategy for the Cahn–Hilliard equation. Commun. Comput. Phys. 11(4), 1261–1278 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Wang.

Ethics declarations

Conflict of interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Hong-lin Liao is supported by a Grant 12071216 from National Natural Science Foundation of China. Zhimin Zhang is supported in part by the NSFC Grant 11871092 and NSAF Grant U1930402.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Hl., Ji, B., Wang, L. et al. Mesh-Robustness of an Energy Stable BDF2 Scheme with Variable Steps for the Cahn–Hilliard Model. J Sci Comput 92, 52 (2022). https://doi.org/10.1007/s10915-022-01861-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01861-4

Keywords

Mathematics Subject Classification

Navigation