Skip to main content
Log in

Implicit and Implicit–Explicit Strong Stability Preserving Runge–Kutta Methods with High Linear Order

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Strong stability preserving (SSP) time discretizations preserve the monotonicity properties satisfied by the spatial discretization when coupled with the first order forward Euler, under a certain time-step restriction. The search for high order strong stability preserving time-stepping methods with high order and large allowable time-step has been an active area of research. It is known that implicit SSP Runge–Kutta methods exist only up to sixth order; however, if we restrict ourselves to solving only linear autonomous problems, the order conditions simplify and we can find implicit SSP Runge–Kutta methods of any linear order. In the current work we find implicit SSP Runge–Kutta methods with high linear order \(p_{lin} \le 9\) and nonlinear orders \(p=2,3,4\), that are optimal in terms of allowable SSP time-step. Next, we formulate a novel optimization problem for implicit–explicit (IMEX) SSP Runge–Kutta methods and find optimized IMEX SSP Runge–Kutta pairs that have high linear order \(p_{lin} \le 7\) and nonlinear orders up to \(p=4\). We also find implicit methods with large linear stability regions that pair with known explicit SSP Runge–Kutta methods. These methods are then tested on sample problems to demonstrate the sharpness of the SSP coefficient and the typical behavior of these methods on test problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ascher, U., Ruuth, S., Wetton, B.: Implicit–explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32, 797–823 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit–explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25, 151–167 (1997). (Special Issue on Time Integration)

    Article  MATH  MathSciNet  Google Scholar 

  3. Boscarino, S., Pareschi, L., Russo, G.: Implicit–explicit Runge–Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit. SIAM J. Sci. Comput. 35, A22–A51 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, New York (2016)

    Book  MATH  Google Scholar 

  5. Calvo, M., de Frutos, J., Novo, J.: Linearly implicit Runge–Kutta methods for advection–reaction–diffusion equations. Appl. Numer. Math. 37, 535–549 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Christlieb, A.J., Gottlieb, S., Grant, Z., Seal, D.C.: Explicit strong stability preserving multistage two-derivative time-stepping schemes. J. Sci. Comput. 68, 914–942 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  7. Conde, S., Gottlieb, S., Grant, Z.: Optimal strong stability preserving implicit linear/nonlinear methods. https://github.com/SSPmethods/ImplicitLNLMethods

  8. Conde, S., Gottlieb, S., Grant, Z.: Optimized strong stability preserving imex methods. https://github.com/SSPmethods/imexLNL

  9. Crouzeix, M.: Une m’ethode multipas implicite–explicite pour l’approximation des equations d’evolution paraboliques. Numerische Mathematik 35, 257–276 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ferracina, L., Spijker, M.N.: Stepsize restrictions for the total-variation-diminishing property in general Runge–Kutta methods. SIAM J. Numer. Anal. 42, 1073–1093 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ferracina, L., Spijker, M.N.: An extension and analysis of the Shu–Osher representation of Runge–Kutta methods. Math. Comput. 249, 201–219 (2005)

    MATH  MathSciNet  Google Scholar 

  12. Gottlieb, S., Grant, Z., Higgs, D.: Optimal explicit strong stability preserving Runge–Kutta methods with high linear order and optimal nonlinear order. Math. Comput. 84, 2743–2761 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gottlieb, S., Ketcheson, D.I., Shu, C.-W.: Strong Stability Preserving Runge–Kutta and Multistep Time Discretizations. World Scientific Press, London (2011)

    Book  MATH  Google Scholar 

  14. Higueras, I.: On strong stability preserving time discretization methods. J. Sci. Comput. 21, 193–223 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Higueras, I.: Representations of Runge–Kutta methods and strong stability preserving methods. SIAM J. Numer. Anal. 43, 924–948 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Higueras, I.: Strong stability for additive Runge–Kutta methods. SIAM J. Numer. Anal. 44, 1735–1758 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Higueras, I.: Characterizing strong stability preserving additive Runge–Kutta methods. J. Sci. Comput. 39, 115–128 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Higueras, I., Happenhofer, N., Koch, O., Kupka, F.: Optimized strong stability preserving IMEX Runge–Kutta methods. J. Comput. Appl. Math. 272, 116–140 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kennedy, C., Carpenter, M.: Additive Runge–Kutta schemes for convection–diffusion–reaction equations. Appl. Numer. Math. 44, 139–181 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ketcheson, D.I.: Highly efficient strong stability preserving Runge–Kutta methods with low-storage implementations. SIAM J. Sci. Comput. 30, 2113–2136 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ketcheson, D.I.: Runge–Kutta methods with minimum storage implementations. J. Comput. Phys. 229, 1763–1773 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ketcheson, D.I., Gottlieb, S., Macdonald, C.B.: Strong stability preserving two-step Runge–Kutta methods. SIAM J. Numer. Anal. 49, 2618–2639 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. Ketcheson, D.I., Macdonald, C.B., Gottlieb, S.: Optimal implicit strong stability preserving Runge–Kutta methods. Appl. Numer. Math. 52, 373 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Ketcheson, D.I., Parsani, M., Ahmadia, A.J.: RK-opt: software for the design of Runge–Kutta methods, version 0.2. https://github.com/ketch/RK-opt

  25. Kraaijevanger, J.F.B.M.: Contractivity of Runge–Kutta methods. BIT 31, 482–528 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kubatko, E.J., Yeager, B.A., Ketcheson, D.I.: Optimal strong-stability-preserving Runge–Kutta time discretizations for discontinuous galerkin methods. J. Sci. Comput. 60, 313–344 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kupka, F., Happenhofer, N., Higueras, I., Koch, O.: Total-variation-diminishing implicit–explicit Runge–Kutta methods for the simulation of double-diffusive convection in astrophysics. J. Comput. Phys. 231, 3561–3586 (2012)

    Article  MATH  Google Scholar 

  28. Pareschi, L., Russo, G.: Implicit–explicit Runge–Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25, 129–155 (2005)

    MATH  MathSciNet  Google Scholar 

  29. Ruuth, S.J., Spiteri, R.J.: Two barriers on strong-stability-preserving time discretization methods. J. Sci. Comput. 17, 211–220 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  30. Shu, C.-W.: Total-variation diminishing time discretizations. SIAM J. Sci. Stat. Comput. 9, 1073–1084 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  31. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  32. Spiteri, R.J., Ruuth, S.J.: A new class of optimal high-order strong-stability-preserving time discretization methods. SIAM J. Numer. Anal. 40, 469–491 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the anonymous referees whose careful reading and insightful comments dramatically improved this manuscript. This work was supported by AFOSR Grant FA9550-15-1-0235, and was partially supported by DOE NNSA ASC Algorithms effort, the DOE Office of Science AMR program at Sandia National Laboratory under contract DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sigal Gottlieb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conde, S., Gottlieb, S., Grant, Z.J. et al. Implicit and Implicit–Explicit Strong Stability Preserving Runge–Kutta Methods with High Linear Order. J Sci Comput 73, 667–690 (2017). https://doi.org/10.1007/s10915-017-0560-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0560-2

Keywords

Navigation