Skip to main content
Log in

A Two-Grid Block-Centered Finite Difference Method for the Nonlinear Time-Fractional Parabolic Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this article, a two-grid block-centered finite difference scheme is introduced and analyzed to solve the nonlinear time-fractional parabolic equation. This method is considered where the nonlinear problem is solved only on a coarse grid of size H and a linear problem is solved on a fine grid of size h. Stability results are proven rigorously. Error estimates are established on non-uniform rectangular grid which show that the discrete \(L^{\infty }(L^2)\) and \(L^2(H^1)\) errors are \(O(\triangle t^{2-\alpha }+h^2+H^3)\). Finally, some numerical experiments are presented to show the efficiency of the two-grid method and verify that the convergence rates are in agreement with the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Golmankhaneh, A.K., Baleanu, D.: Fractal calculus involving gauge function. Commun. Nonlinear Sci. Numer. Simul. 37, 125–130 (2016)

    Article  MathSciNet  Google Scholar 

  2. Khalili Golmankhaneh, A., Baleanu, D.: New derivatives on the fractal subset of real-line. Entropy 18(2), 1 (2016)

    Article  Google Scholar 

  3. Jiang, Y., Ma, J.: High-order finite element methods for time-fractional partial differential equations. J. Comput. Appl. Math. 235(11), 3285–3290 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Li, W., Da, X.: Finite central difference/finite element approximations for parabolic integro-differential equations. Computing 90(3–4), 89–111 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Liu, Y., Du, Y., Li, H., He, S., Gao, W.: Finite difference/finite element method for a nonlinear time-fractional fourth-order reaction–diffusion problem. Comput. Math. Appl. 70(4), 573–591 (2015)

  6. Zeng, F., Li, C., Liu, F., Turner, I.: The use of finite difference/element approaches for solving the time-fractional subdiffusion equation. SIAM J. Sci. Comput. 35(6), A2976–A3000 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Zhang, N., Deng, W., Wu, Y.: Finite difference/element method for a two-dimensional modified fractional diffusion equation. Adv. Appl. Math. Mech 4, 496–518 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu, Y., Fang, Z., Li, H., He, S.: A mixed finite element method for a time-fractional fourth-order partial differential equation. Appl. Math. Comput. 243, 703–717 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Liu, Y., Li, H., Gao, W., He, S., Fang, Z.: A new mixed element method for a class of time-fractional partial differential equations. Sci. World J. 2014, 141467 (2014). doi:10.1155/2014/141467

  10. Huang, J., Tang, Y., Vázquez, L., Yang, J.: Two finite difference schemes for time fractional diffusion-wave equation. Numer. Algorithms 64(4), 707–720 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sousa, E.: Finite difference approximations for a fractional advection diffusion problem. J. Comput. Phys. 228(11), 4038–4054 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sousa, E.: A second order explicit finite difference method for the fractional advection diffusion equation. Comput. Math. Appl. 64(10), 3141–3152 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sousa, E.: An explicit high order method for fractional advection diffusion equations. J. Comput. Phys. 278, 257–274 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Vong, S., Wang, Z.: A high order compact finite difference scheme for time for fractional Fokker–Planck equations. Appl. Math. Lett. 43, 38–43 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, Z., Li, X.: A Crank–Nicolson difference scheme for the time variable fractional mobile-immobile advection-dispersion equation. J. Appl. Math. Comput. doi:10.1007/s12190-016-1079-7

  16. Liu, Z., Cheng, A., Li, X.: A second order finite difference scheme for quasilinear time fractional parabolic equation based on new fractional derivative. Int. J. Comput. Math. doi:10.1080/00207160.2017.1290434

  17. Cheng, A., Wang, H., Wang, K.: A eulerian-lagrangian control volume method for solute transport with anomalous diffusion. Numer. Methods Partial Differ. Equ. 31(1), 253–267 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wei, L., He, Y.: Analysis of a fully discrete local discontinuous galerkin method for time-fractional fourth-order problems. Appl. Math. Model. 38(4), 1511–1522 (2014)

    Article  MathSciNet  Google Scholar 

  19. Lin, Y., Li, X., Xu, C.: Finite difference/spectral approximations for the fractional cable equation. Math. Comput. 80(275), 1369–1396 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225(2), 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl 1(2), 1–13 (2015)

    Google Scholar 

  22. Atangana, A.: On the new fractional derivative and application to nonlinear fishers reaction-diffusion equation. Appl. Math. Comput. 273, 948–956 (2016)

    MathSciNet  Google Scholar 

  23. Atangana, A., Koca, I.: Chaos in a simple nonlinear system with atangana-baleanu derivatives with fractional order. Chaos, Solitons Fractals: Interdiscip. J. Nonlinear Sci., Nonequilib. Complex Phenom. 10, 447–454 (2016)

  24. Atangana, A., Baleanu, D.: Numerical solution of a kind of fractional parabolic equations via two difference schemes. Abstr. Appl. Anal. 2013, 828764 (2013). doi:10.1155/2013/828764

  25. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Bouzid, N., Merad, M., Baleanu, D.: On fractional Duffin–Kemmer–Petiau equation. Few-Body Syst. 57(4), 265–273 (2016)

    Article  Google Scholar 

  27. Zhang, Y., Benson, D.A., Reeves, D.M.: Time and space nonlocalities underlying fractional-derivative models: distinction and literature review of field applications. Adv. Water Resour. 32(4), 561–581 (2009)

    Article  Google Scholar 

  28. Gao, G.H., Sun, H.W., Sun, Z.Z.: Stability and convergence of finite difference schemes for a class of time-fractional sub-diffusion equations based on certain superconvergence. J. Comput. Phys. 280, 510–528 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Schumer, R., Benson, D.A., Meerschaert, M.M., Baeumer, B.: Fractal mobile/immobile solute transport. Water Resour. Res. (2003). doi:10.1029/2003WR002141

  30. Liu, F., Zhuang, P., Burrage, K.: Numerical methods and analysis for a class of fractional advection-dispersion models. Comput. Math. Appl. 64(10), 2990–3007 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, H., Liu, F., Phanikumar, M.S., Meerschaert, M.M.: A novel numerical method for the time variable fractional order mobile-immobile advection-dispersion model. Comput. Math. Appl. 66(5), 693–701 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ashyralyev, A., Cakir, Z.: On the numerical solution of fractional parabolic partial differential equations with the dirichlet condition. Discrete Dyn. Nat. Soc. 2012, 696179 (2012). doi:10.1155/2012/696179

  33. Ashyralyev, A., Cakir, Z.: Fdm for fractional parabolic equations with the neumann condition. Adv. Differ. Equ. 2013(1), 1–16 (2013)

    Article  MathSciNet  Google Scholar 

  34. Ashyralyev, A.: Well-posedness of fractional parabolic equations. Bound. Value Probl. 2013(1), 1–18 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Raviart, P.A., Thomas, J.M.: A mixed finite element method for 2-nd order elliptic problems. In: Mathematical Aspects of Finite Element Methods, pp. 292–315. Springer Berlin Heidelberg (1977)

  36. Arbogast, T., Wheeler, M.F., Yotov, I.: Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences. SIAM J Numer Anal 34(2), 828–852 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  37. Rui, H., Pan, H.: A block-centered finite difference method for the darcy-forchheimer model. SIAM J. Numer. Anal. 50(5), 2612–2631 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Li, X., Rui, H.: Characteristic block-centred finite difference methods for nonlinear convection-dominated diffusion equation. Int. J. Comput. Math. 89(1), 386–404 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Li, X., Rui, H.: A two-grid block-centered finite difference method for nonlinear non-fickian flow model. Appl. Math. Comput. 281, 300–313 (2016)

    MathSciNet  Google Scholar 

  40. Rui, H., Pan, H.: Block-centered finite difference methods for parabolic equation with time-dependent coefficient. Jpn. J. Ind. Appl. Math. 30(3), 681–699 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Rui, H., Wei, L.: A two-grid block-centered finite difference method for Darcy–Forchheimer flow in porous media. SIAM J. Numer. Anal. 53(4), 1941–1962 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Liu, Z., Li, X.: A parallel cgs block-centered finite difference method for a nonlinear time-fractional parabolic equation. Comput. Methods Appl. Mech. Eng. 308, 330–348 (2016)

    Article  MathSciNet  Google Scholar 

  43. Xu, J.: Two-grid discretization techniques for linear and nonlinear pdes. SIAM J. Numer. Anal. 33(5), 1759–1777 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  44. Dawson, C.N., Wheeler, M.F., Woodward, C.S.: A two-grid finite difference scheme for nonlinear parabolic equations. SIAM J. Numer. Anal. 35(2), 435–452 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  45. Nédélec, J.C.: Mixed finite elements in \(\mathbb{R}^3\). Numer. Math. 35(3), 315–341 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  46. Douglas Jr., J., Wang, J.: Superconvergence of mixed finite element methods on rectangular domains. Calcolo 26(2–4), 121–133 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  47. Durán, R.: Superconvergence for rectangular mixed finite elements. Numer. Math. 58(1), 287–298 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and referees for their valuable comments and suggestions which helped us to improve the results of this paper. This work is supported by the National Natural Science Foundation of China Grant Nos. 11671233, 91330106.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxing Rui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Rui, H. A Two-Grid Block-Centered Finite Difference Method for the Nonlinear Time-Fractional Parabolic Equation. J Sci Comput 72, 863–891 (2017). https://doi.org/10.1007/s10915-017-0380-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0380-4

Keywords

Mathematics Subject Classification

Navigation