Skip to main content
Log in

Rectangular Lattice-Boltzmann Schemes with BGK-Collision Operator

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The usual lattice-Boltzmann schemes for fluid flow simulations operate with square and cubic lattices. Instead of relying on square lattices it is possible to use rectangular and orthorombic lattices as well. Schemes using rectangular lattices can be constructed in several ways. Here we construct a rectangular scheme, with the BGK collision operator, by introducing 2 additional discrete velocities into the standard D2Q9 stencil and show how the same procedure can be applied in three dimensions by extending the D3Q19 stencil. The weights and scaling factors for the new stencils are found as the solutions of the well-known Hermite quadrature problem, assuring isotropy of the lattice tensors up to rank four (Philippi et al., Phys. Rev. E 73(5):056702, 2006) This isotropy is a necessary and sufficient condition for assuring the same second order accuracy of lattice-Boltzmann equation with respect to the Navier–Stokes hydrodynamic equations that is found with the standard D2Q9 and D3Q19 stencils. The numerical validation is done, in the two-dimensional case, by using the new rectangular scheme with D2R11 stencil for simulating the Taylor–Green vortex decay. The D3R23 stencil is numerically validated with three-dimensional simulations of cylindrical sound waves propagating from a point source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Benzi, R., Succi, S., Vergassola, M.: The lattice Boltzmann equation: theory and applications. Phys. Rep. 222(3), 145 (1992)

    Article  Google Scholar 

  2. Aidun, C., Clausen, J.: Lattice-Boltzmann method for complex flows. Annu. Rev. Fluid Mech. 42, 439 (2010)

    Article  MathSciNet  Google Scholar 

  3. Inamuro, T., Sturtevant, B.: Numerical study of discrete-velocity gases. Phys. Fluids A 2(12), 2196 (1990)

    Article  MATH  Google Scholar 

  4. McNamara, G., Garcia, A., Alder, B.: Stabilization of thermal lattice Boltzmann models. J. Stat. Phys. 81(1–2), 395 (1995)

    Article  MATH  Google Scholar 

  5. Reider, M., Sterling, J.: Accuracy of discrete-velocity BGK models for the simulation of the incompressible Navier-Stokes equations. Comput. Fluids 24(4), 459 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cao, N., Chen, S., Jin, S., Martínez, D.: Physical symmetry and lattice symmetry in the lattice Boltzmann method. Phys. Rev. E 55(1), R21 (1997)

    Article  Google Scholar 

  7. Nannelli, F., Succi, S.: The lattice Boltzmann equation on irregular lattices. J. Stat. Phys. 68(3–4), 401 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Amati, G., Succi, S., Benzi, R.: Turbulent channel flow simulations using a coarse-grained extension of the lattice Boltzmann method. Fluid Dyn. Res. 19(5), 289 (1997)

    Article  Google Scholar 

  9. Chen, H.: Volumetric formulation of the lattice Boltzmann method for fluid dynamics: basic concept. Phys. Rev. E 58(3), 3955 (1998)

    Article  Google Scholar 

  10. Lee, T., Lin, C.-L.: A characteristic Galerkin method for discrete boltzmann equation. J. Comput. Phys. 171(1), 336 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Shi, X., Lin, J., Yu, Z.: Discontinuous Galerkin spectral element lattice Boltzmann method on triangular element. Int. J. Numer. Meth. Fluids 42(11), 1249 (2003)

    Article  MATH  Google Scholar 

  12. Li, Y., LeBoeuf, E., Basu, P.: Least-squares finite-element lattice Boltzmann method. Phys. Rev. E 69(6), 065701(R) (2004)

  13. Abe, T.: Derivation of the Lattice Boltzmann method by means of the discrete ordinate method for the Boltzmann equation. J. Comput. Phys. 131(1), 241 (1997)

    Article  MATH  Google Scholar 

  14. He, X., Luo, L.-S.: Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E 56(6), 6811 (1997)

    Article  Google Scholar 

  15. Shan, X., He, X.: Discretization of the velocity space in the solution of the Boltzmann equation. Phys. Rev. Lett. 80(1), 65 (1998)

    Article  Google Scholar 

  16. Philippi, P., Hegele Jr, L.: From the continuous to the lattice Boltzmann equation: the discretization problem and thermal models. Phys. Rev. E 73(5), 056702 (2006)

    Article  MathSciNet  Google Scholar 

  17. Shan, X., Yuan, X.-F., Chen, H.: Kinetic theory representation of hydrodynamics: a way beyond the Navier-Stokes equation. J. Fluid Mech. 550, 413 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shan, X.: General solution of lattices for Cartesian lattice Bhatanagar-Gross-Krook models. Phys. Rev. E 81(3), 036702 (2010)

    Article  Google Scholar 

  19. Zhou, J.: Rectangular lattice Boltzmann method. Phys. Rev. E 81(2), 026705 (2010)

    Article  Google Scholar 

  20. Bhatnagar, P., Gross, E., Krook, M.: A Model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94(3), 511 (1954)

    Article  MATH  Google Scholar 

  21. Bouzidi, M., d’Humières, D., Lallemand, P., Luo, L.-S.: Lattice Boltzmann equation on a two-dimensional rectangular grid. J. Comput. Phys. 172(2), 704 (2001)

    Article  MATH  Google Scholar 

  22. Chikatamarla, S., Karlin, I.: Comment on “Rectangular lattice Boltzmann method”. Phys. Rev. E 83(4), 048701 (2011)

    Article  MathSciNet  Google Scholar 

  23. Koelman, J.: A simple lattice Boltzmann scheme for Navier-Stokes fluid flow. Europhys. Lett. 15(6), 603 (1991)

    Article  Google Scholar 

  24. van der Sman, R.: Galilean invariant lattice Boltzmann scheme for natural convection on square and rectangular lattices. Phys. Rev. E 74(2), 026705 (2006)

    Article  MathSciNet  Google Scholar 

  25. He, X., Luo, L.-S., Dembo, M.: Some progress in lattice Boltzmann method. Part I. nonuniform mesh grids. J. Comput. Phys. 129(2), 357 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Higuera, F., Succi, S., Benzi, R.: Lattice gas dynamics with enhanced collisions. Europhys. Lett. 9(4), 345 (1989)

    Article  Google Scholar 

  27. d’Humières, D.: Generalized lattice-Boltzmann equations. In Shizgal, B., Weave, D. (eds.), Rarefied Gas Dynamics: Theory and Simulations Prog. Astronaut. Aeronaut, vol. 159, p. 450. AIAA Press, Washington (1992)

  28. Ginzburg, I.: Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation. Adv. Water Resour. 28(11), 1171 (2005)

    Article  Google Scholar 

  29. Philippi, P., Hegele Jr, L., Surmas, R., Siebert, D., Dos Santos, L.: From the Boltzmann to the lattice-Boltzmann equation: beyond BGK collision models. Internat. J. Modern Phys. C 18(4), 556 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shan, X., Chen, H.: A general multiple-relaxation-time Boltzmann collision model. Internat. J. Modern Phys. C 18(4), 635 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. d’Humières, D., Bouzidi, M., Lallemand, P.: Thirteen-velocity three-dimensional lattice Boltzmann model. Phys. Rev. E 63(6), 066702 (2001)

    Article  Google Scholar 

  32. Alim, U., Entezari, A., Möller, T.: The Lattice-Boltzmann method on optimal sampling lattices. IEEE Trans. Vis. Comput. Graphics 15(4), 630 (2009)

    Article  Google Scholar 

  33. Qian, Y., d’Humières, D., Lallemand, P.: Lattice BGK models for Navier-Stokes equation. Europhys. Lett. 17(6), 479 (1992)

    Article  MATH  Google Scholar 

  34. Petkov, K., Qiu, F., Fan, Z., Kaufman, A., Mueller, K.: Efficient LBM visual simulation on face-centered cubic lattices. IEEE Trans. Vis. Comput. Graphics 15(5), 802 (2009)

    Article  Google Scholar 

  35. Krüger, T., Varnik, F., Raabe, D., Second-order convergence of the deviatoric stress tensor in the standard Bhatnagar-Gross-Krook lattice Boltzmann method. Phys. Rev. E 82(2), 025701(R) (2010)

  36. Ladd, A., Verberg, R.: Lattice-Boltzmann simulations of particle-fluid suspensions. J. Stat. Phys. 104(5–6), 1191 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. Latt, J., Chopard, B.: Lattice Boltzmann method with regularized pre-collision distribution functions. Math. Comput. Simul. 72(2–6), 165 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kinsler, L., Frey, A., Coppens, A., Sanders, J.: Fundamentals of Acoustics, 4th edn. Wiley, New York (2000)

  39. Viggen, E.: The lattice Boltzmann method in acoustics. In Proceedings of 33rd Scandinavian Sympousium on Physical Acoustics, Geilo, Norway (2010)

  40. Viggen, E.: Viscously damped acoustic waves with the lattice Boltzmann method. Phil. Trans. R. Soc. A 369(1944), 2246 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Petrobras funding is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Mattila.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hegele Jr, L.A., Mattila, K. & Philippi, P.C. Rectangular Lattice-Boltzmann Schemes with BGK-Collision Operator. J Sci Comput 56, 230–242 (2013). https://doi.org/10.1007/s10915-012-9672-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-012-9672-x

Keywords

Navigation