Skip to main content
Log in

Determination of Copper(II) Ion Concentration by Lifetime Measurements of Green Fluorescent Protein

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The understanding of cellular processes and functions and the elucidation of their physiological mechanisms is an important aim in the life sciences. One important aspect is the uptake and the release of essential substances as well as their interactions with the cellular environment. As green fluorescent protein (GFP) can be genetically encoded in cells it can be used as an internal sensor giving a deeper insight into biochemical pathways. Here we report that the presence of copper(II) ions leads to a decrease of the fluorescence lifetime (τ fl) of GFP and provide evidence for Förster resonance energy transfer (FRET) as the responsible quenching mechanism. We identify the His6-tag as the responsible binding site for Cu2 +  with a dissociation constant K d  = 9 ±2 μM and a Förster radius R 0 = 2.1 ±0.1 nm. The extent of the lifetime quenching depends on [Cu2 + ] which is comprehended by a mathematical titration model. We envision that Cu2 +  can be quantified noninvasively and in real-time by measuring τ fl of GFP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nriagu J (1979) Copper in the environment, part 1. Wiley

  2. Ma Z, Jacobsen FE, Giedroc DP (2009) Chem Rev 109:4644–4681

    Article  PubMed  CAS  Google Scholar 

  3. Kao WC, Chen YR, Yi EC, Lee H, Tian Q, Wu KM, Tsai SF, Yu SS-F, Chen YJ, Aebersold R, Chan SI (2004) J Biol Chem 279:51554–51560

    Article  PubMed  CAS  Google Scholar 

  4. Schmauder R, Librizzi F, Canters GW, Schmidt T, Aartsma TJ (2005) ChemPhysChem 6:1381–1386

    Article  PubMed  CAS  Google Scholar 

  5. Robinson NJ, Winge DR (2010) Annu Rev Biochem 79:537–562

    Article  PubMed  CAS  Google Scholar 

  6. Penfield KW, Gerwith A, Solomon EI (1985) J Am Chem Soc 107:4519–4529

    Article  CAS  Google Scholar 

  7. Peers G, Price NM (2006) Nature 441:341–344

    Article  PubMed  CAS  Google Scholar 

  8. Nies DH (1999) Appl Microbiol Biotechnol 51:730–750

    Article  PubMed  CAS  Google Scholar 

  9. Lippard SJ, Berg JM (1994) Principles of bioinorganic chemistry. University Science Books, Mill Valley, CA

    Google Scholar 

  10. Rossi L, Lombardo MF, Ciriolo MR (2004) Neurochem Res 29:493–504

    Article  PubMed  CAS  Google Scholar 

  11. Epstein E, Bloom AJ (2004) Mineral nutrition of plants: principles & perspectives, 2nd edn. Sinauer Associates, Inc

  12. Balamurugan K, Schaffner W (2006) Biochim Biophys Acta 1763:737–746

    Article  PubMed  CAS  Google Scholar 

  13. Halliwell B, Gutteridge JM (1984) Biochem J 219:1–14

    PubMed  CAS  Google Scholar 

  14. Borkow G, Gabbay J (2004) FASEB J 18:1728–1730

    PubMed  CAS  Google Scholar 

  15. Michels HT, Moran W, Michel J (2008) Adv Mater Process 166:57–58

    Google Scholar 

  16. Ala A, Walker AP, Ashkan K, Dooley JS, Schilsky ML (2007) The Lancet 369:397–408

    Article  CAS  Google Scholar 

  17. Sarell CJ, Syme CD, Rigby SEJ, Viles JH (2009) Biochem 48:4388–4402

    Article  CAS  Google Scholar 

  18. Kramer ML, Kratzin HD, Schmitt B, Römer A, Windl O, Liemann S, Hornemann S, Kretzschmar H (2001) J Biol Chem 276:16711–16719

    Article  PubMed  CAS  Google Scholar 

  19. Peña MMO, Lee J, Thiele DJ (1999) J Nutr 129:1251–1260

    PubMed  Google Scholar 

  20. Wegner SV, Arslan H, Sunbul M, Yin J, He CJ (2010) Am Chem Soc 132:2567–2569

    Article  CAS  Google Scholar 

  21. Zeng L, Miller EW, Pralle A, Isacoff EY, Chang CJ (2006) J Am Chem Soc 2006 128:10–11

    Article  CAS  Google Scholar 

  22. Yang L, McRae R, Henary MM, Patel R, Lai B, Vogt S, Fahrni CJ (2005) Proc Natl Acad Sci USA 102:11179–11184

    Article  PubMed  CAS  Google Scholar 

  23. Koneswaran M, Narayanaswamy R (2009) Sens Actuators B Chem 139:104–109

    Article  Google Scholar 

  24. Lai S, Chang X, Fu C (2009) Microchim Acta 165:39–44

    Article  CAS  Google Scholar 

  25. Zanganeh A, Amini M (2009) Sens Actuators B Chem 135:358–365

    Article  Google Scholar 

  26. Aksuner N, Hendren E, Yilmaz I, Cukurovali A (2008) Sens Actuators B Chem 134:510-515

    Article  Google Scholar 

  27. Yildirim M, Kaya JJ (2010) Fluoresc 20:771–777

    Article  CAS  Google Scholar 

  28. Xu GR, Yuan Y, Kim S, Lee JJ (2008) Electroanalysis 20:1690–1695

    Article  CAS  Google Scholar 

  29. Ormö M, Cubitt AB, Kallio K, Gross LA, Tsien RY, Remington SJ (1996) Science 273:1392–1395

    Article  PubMed  Google Scholar 

  30. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Science 263:802–805

    Article  PubMed  CAS  Google Scholar 

  31. Ehrenberg M (2008) Scientific background on the nobel prize in chemistry 2008. The green fluorescent protein: discovery, expression and development

  32. Eli P, Chakrabartty A (2006) Protein Sci 15:2442–2447

    Article  PubMed  CAS  Google Scholar 

  33. Rahimi Y, Goulding A, Shrestha S, Mirpuri S, Deo SK (2008) Biochem Biophys Res Commun 370:57–61

    Article  PubMed  CAS  Google Scholar 

  34. Tansila N, Becker K, Na-Ayudhya CI, Prachayasittikul V, Bülow L (2008) Biotechnol Lett 30:1391–1396

    Article  PubMed  CAS  Google Scholar 

  35. Richmond TA, Takahashi TT, Shimkhada R, Bernsdorf J (2000) Biochem Biophys Res Commun 268:462–465

    Article  PubMed  CAS  Google Scholar 

  36. Jung G, Wiehler J, Zumbusch A (2005) Biophys J 88:1932–1947

    Article  PubMed  CAS  Google Scholar 

  37. Jung G, Zumbusch A (2006) Microsc Res Tech 69:175–185

    Article  PubMed  CAS  Google Scholar 

  38. Jung G, Werner M, Schneider M (2008) ChemPhysChem 9:1867–1874

    Article  PubMed  CAS  Google Scholar 

  39. Voss S, Skerra A (1997) Protein Eng 10:975–982

    Article  PubMed  CAS  Google Scholar 

  40. Isarankura-Na-Ayndhyn C, Tantimongcolwat T, Galla H, Prachayansittihad V (2010) Biol Trace Elem Res 134:352–363

    Article  Google Scholar 

  41. Guignet EG, Hovius R, Vogel H (2004) Nat Biotechnol 22:440–444

    Article  PubMed  CAS  Google Scholar 

  42. Baute D, Arieli D, Neese F, Zimmermann H, Weckhuysen BM, Goldfarb D (2004) J Am Chem Soc 126:11733–11745

    Article  PubMed  CAS  Google Scholar 

  43. El Khouri Y, Hellwig P (2009) J Biol Inorg Chem 14:23–34

    Article  Google Scholar 

  44. Mesu JG, Visser T, Soulimani F, van Faassen EE, de Peinder P, Beale AM, Weckhuysen BM (2006) Inorg Chem Chem 45:1960–1971

    Article  CAS  Google Scholar 

  45. Sumner JP, Westerberg NM, Stoddard AK, Hurst TK, Cramer M, Thompson RB, Fierke CA, Kopelman R (2006) Biosens (2006) Biosens Bioelectron 21:1302–1308

    Article  CAS  Google Scholar 

  46. Wilson EW, Kasperian MH, Martin RB (1970) J Am Chem Soc 92:5365–5372

    Article  PubMed  CAS  Google Scholar 

  47. Hund HK, Breuer J, Lingens F, Hüttermann J, Kappl R, Fetzner S (1999) Eur J Biochem 263:871–878

    Article  PubMed  CAS  Google Scholar 

  48. Scholl HJ, Hüttermann J (1992) J Phys Chem 96:9684–9691

    Article  CAS  Google Scholar 

  49. Sakaguchi U, Addison AW (1979) J Chem Soc Dalton Trans 4:600–608

    Article  Google Scholar 

  50. Knecht S, Ricklin D, Eberle AN, Ernst B (2009) J Mol Recognit 22:270–279

    Article  PubMed  CAS  Google Scholar 

  51. Chen CW, Lin HL, Lin JC, Ho Y (2005) J Chin Chem Soc 52:1281–1290

    CAS  Google Scholar 

  52. Regan L (1993) Annu Rev Biophys Biomol Struct 22:257–281

    Article  PubMed  CAS  Google Scholar 

  53. Ullmann GM (2003) J Phys Chem B 107:1263–1271

    Article  CAS  Google Scholar 

  54. Eftink MR, Ghiron C (1981) Anal Biochem 114:199–227

    Article  PubMed  CAS  Google Scholar 

  55. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer Academic, New York

    Google Scholar 

  56. Doose S, Neuweiler H, Sauer M (2009) ChemPhysChem 10:1389–1398

    Article  PubMed  CAS  Google Scholar 

  57. Murphy CJ, Arkin MR, Jenkins Y, Ghatlia ND, Bossmann SH, Turro, NJ, Barton JK (1993) Science 262:1025–1029

    Article  PubMed  CAS  Google Scholar 

  58. Schlag EW, Sheu SY, Yang DY, Selzle HL, Lin SH (2007) Angew Chem 119:3258–3273

    Article  Google Scholar 

  59. Schlag EW, Sheu SY, Yang DY, Selzle HL, Lin SH (2007) Angew Chem Int Ed 46:3196–3199

    Article  CAS  Google Scholar 

  60. Dietrich A, Buschmann V, Müller C, Sauer M (2002) Rev Mol Biotechnol 82:211–231

    Article  CAS  Google Scholar 

  61. Edsall JT, Felsenfeld G, Goodman DS, Gurd FRN (1954) J Am Chem Soc 76:3054-3061

    Article  CAS  Google Scholar 

  62. Förster T (1948) Ann Phys 2:55–75

    Article  Google Scholar 

  63. Dale RE, Eisinger J, Blumberg WE (1979) Biophys J 26:161–194

    Article  PubMed  CAS  Google Scholar 

  64. Hitchman MA, Waite TD (1976) Inorg Chem 15:2150–2154

    Article  CAS  Google Scholar 

  65. Selvin P.R, Hearst JE (1994) Proc Natl Acad Sci USA 91:10024–10028

    Article  PubMed  CAS  Google Scholar 

  66. Zimmer M (2002) Chem Rev 102:759–781

    Article  PubMed  CAS  Google Scholar 

  67. Khan YR, Dykstra TE, Scholes GD (2008) Chem Phys Lett 461:305–309

    Article  CAS  Google Scholar 

  68. Sahoo H, Roccatano D, Hennig A, Nau WM (2007) J Am Chem Soc 129:9762–9772

    Article  PubMed  CAS  Google Scholar 

  69. Yang F, Moss LG, Phillips GN (1996) Nat Biotechnol 14:1246–1251

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to D. Auerbach for help with the expression and N. Baltes for careful reading of the manuscript. The authors also thank T. Seidel (Bielefeld) for kindly providing us with the eYFP-plasmid. This work was supported by German Research Foundation (DFG, grant JU 650/2-1 and 2-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor Jung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hötzer, B., Ivanov, R., Altmeier, S. et al. Determination of Copper(II) Ion Concentration by Lifetime Measurements of Green Fluorescent Protein. J Fluoresc 21, 2143–2153 (2011). https://doi.org/10.1007/s10895-011-0916-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-011-0916-1

Keywords

Navigation