Skip to main content
Log in

Planar Octacoordinate Aluminium in Dual Aromatic AlBe4N4 Cluster

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

High level quantum chemical methods based on density functional theory and coupled cluster have been carried out to predict AlBe4N4 cluster containing a planar octacoordinate aluminium centre. The neutral cluster has a quasi-planar structure in which the central Al atom lies only 0.30 Å above the molecular plane. The global minimum of the anionic cluster is perfectly planar and features dual aromaticity (orthogonally delocalized (4n + 2; n = 1) σ and π orbitals in the Hückel framework) and it is thermodynamically very stable. The dual aromatic behaviour of this cluster comes from the planarity of the ring, delocalized (4n + 2) σ and π bonds which has been supported by Shannon aromaticity index and σ,π—separated electron localization function analyses. The anionic cluster has been found to have profound Lewis acidity. The calculated gas phase fluoride ion affinity and its reaction with tetrahydrofuran reveal that the proposed cluster has profound Lewis acidic character.

Graphical Abstract

Theoretical search for the planar octacoordinate aluminium centre has been made. The global isomer features dual aromaticity and is thermodynamically very stable. The proposed cluster features profound reactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

Code availability

Not applicable.

References

  1. L.-M. Yang, E. Ganz, Z. Chen, Z.-X. Wang, and P. V. R. Schleyer (2015). Angew. Chem. Int. Ed. 54, 9468.

    Article  CAS  Google Scholar 

  2. D. Röttger and G. Erker (1997). Angew. Chem. Int. Ed. Engl. 36, 812.

    Article  Google Scholar 

  3. Z.-X. Wang and P. V. R. Schleyer (2001). Science 292, 2465.

    Article  CAS  PubMed  Google Scholar 

  4. R. Keese (2006). Chem. Rev. 106, 4787.

    Article  CAS  PubMed  Google Scholar 

  5. M. Menzel, D. Steiner, H.-J. Winkler, D. Schweikart, S. Mehle, S. Fau, G. Frenking, W. Massa, and A. Berndt (1995). Angew. Chem. Int. Ed. Engl. 34, 327.

    Article  CAS  Google Scholar 

  6. W. Huang, A. P. Sergeeva, H.-J. Zhai, B. B. Averkiev, L. S. Wang, and A. I. Boldyrev (2010). Nat. Chem. 2, 202.

    Article  PubMed  Google Scholar 

  7. M. Driess, J. Aust, K. Merz, and C. van Wullen (1999). Angew. Chem. Int. Ed. 38, 3677.

    Article  CAS  Google Scholar 

  8. L. M. Yang, E. Ganz, Z. Chen, Z. X. Wang, and P. V. R. Schelyer (2015). Angew. Chem. Int. Ed. 54, 9468.

    Article  CAS  Google Scholar 

  9. G. Merino, M. A. Méndez-Rojas, A. Vela, and T. Heine (2007). J. Comput. Chem. 28, 362.

    Article  CAS  PubMed  Google Scholar 

  10. K. Sorger and P. V. R. Schleyer (1995). THEOCHEM 338, 317.

    Article  Google Scholar 

  11. L. Radom and D. R. Rasmussen (1998). Pure Appl. Chem. 70, 1977.

    Article  CAS  Google Scholar 

  12. W. Siebert and A. Gunale (1999). Chem. Soc. Rev. 28, 367.

    Article  CAS  Google Scholar 

  13. V. Vassilev-Galindo, S. Pan, K. J. Donald, and G. Merino (2018). Nat. Rev. Chem. 2, 0114.

    Article  CAS  Google Scholar 

  14. K. Exner and P. V. R. Schleyer (2000). Science 290, 1937.

    Article  CAS  PubMed  Google Scholar 

  15. J. C. Guo, L. Y. Feng, J. Barroso, G. Merino, and H. J. Zhai (2020). Chem. Commun. 56, 8305.

    Article  CAS  Google Scholar 

  16. V. Bonacic-Koutecky, P. Fantucci, and J. Koutechy (1991). Chem. Rev. 91, 1035.

    Article  CAS  Google Scholar 

  17. F. L. Gu, X. M. Yang, A. C. Tang, H. J. Jiao, and P. V. R. Schleyer (1998). J. Comput. Chem. 19, 203.

    Article  CAS  Google Scholar 

  18. G. Rasul and G. A. Olah (2001). Inorg. Chem. 40, 2453.

    Article  CAS  PubMed  Google Scholar 

  19. H. J. Zhai, A. N. Alexandrova, K. A. Birch, A. I. Boldyrev, and L. S. Wang (2003). Angew. Chem. Int. Ed. 42, 6004.

    Article  CAS  Google Scholar 

  20. H. J. Zhai, B. Kiran, J. Li, and L. S. Wang (2003). Nat. Mater. 2, 827.

    Article  CAS  PubMed  Google Scholar 

  21. Y. Pei and X. C. Zeng (2008). J. Am. Chem. Soc. 130, 2580.

    Article  CAS  PubMed  Google Scholar 

  22. J. I. Aihara, H. Kanno, and T. Ishida (2005). J. Am. Chem. Soc. 127, 13324.

    Article  CAS  PubMed  Google Scholar 

  23. A. J. Kalita, S. S. Rohman, C. Kashyap, S. S. Ullah, and A. K. Guha (2020). Chem. Commun. 56, 12597.

    Article  CAS  Google Scholar 

  24. X. F. Zhao, J. J. Li, H. R. Li, C. Yuan, X. Tian, S. D. Li, Y. B. Wu, J. C. Guo, and Z. X. Wang (2018). Phys. Chem. Chem. Phys. 20, 7217.

    Article  CAS  PubMed  Google Scholar 

  25. A. C. Castro, G. Martínez-Guajardo, T. Johnson, J. M. Ugalde, Y. Wu, J. M. Mercero, T. Heine, K. C. Donald, and G. Merino (2012). Phys. Chem. Chem. Phys. 14, 14764.

    Article  CAS  PubMed  Google Scholar 

  26. R. Grande-Aztatzi, J. L. Cabellos, R. Islas, I. Infante, J. M. Mercero, A. Restrepo, and G. Merino (2015). Phys. Chem. Chem. Phys. 17, 4620.

    Article  CAS  PubMed  Google Scholar 

  27. J.-C. Guo, G.-M. Ren, C.-Q. Miao, W.-J. Tian, Y.-B. Wu, and X. Wang (2015). J. Phys. Chem. A. 119, 13101.

    Article  CAS  PubMed  Google Scholar 

  28. J. O. C. Jimenez-Halla, Y.-B. Wu, Z. X. Wang, R. Islas, T. Heine, and G. Merino (2010). Chem. Comm. 46, 8776.

    Article  CAS  PubMed  Google Scholar 

  29. M. B. Krogh-Jespersen, J. Chandrasekhar, E. U. Wuerthwein, J. B. Collins, and P. V. R. Schleyer (1980). J. Am. Chem. Soc. 102, 2263.

    Article  CAS  Google Scholar 

  30. F. Ebner, H. Wadepohl, and L. Greb (2019). J. Am. Chem. Soc. 141, 18009.

    Article  CAS  PubMed  Google Scholar 

  31. E. J. Thompson, T. W. Myers, and L. A. Berben (2014). Angew. Chem. Int. Ed. 53, 14132.

    Article  CAS  Google Scholar 

  32. B. B. Averkiev and A. I. Boldyrev (2008). Russ. J. Gen. Chem. 78, 769.

    Article  CAS  Google Scholar 

  33. A. N. Alexandrova, A. I. Boldyrev, H.-J. Zhai, and L. S. Wang (2006). Coord. Chem. Rev. 250, 2811.

    Article  CAS  Google Scholar 

  34. D. Zubarev and A. I. Boldyrev (2007). J. Comput. Chem. 28, 251.

    Article  CAS  PubMed  Google Scholar 

  35. J. C. Guo, W. Z. Yao, Z. Li, and S. D. Li (2009). Sci. China Ser. B: Chem. 52, 566.

    Article  CAS  Google Scholar 

  36. J. Zhang and M. Dolg (2015). Phys. Chem. Chem. Phys. 17, 24173.

    Article  CAS  PubMed  Google Scholar 

  37. J. Zhang and M. Dolg (2016). Phys. Chem. Chem. Phys. 18, 3003.

    Article  CAS  PubMed  Google Scholar 

  38. Y. Zhao and D. G. Truhlar (2008). Theor. Chem. Acc. 120, 215.

    Article  CAS  Google Scholar 

  39. J. A. Pople, M. Head-Gordon, and K. Raghavachari (1987). J. Chem. Phys. 87, 5968.

    Article  CAS  Google Scholar 

  40. G. E. Scuseria and H. F. Schaefer (1988). J. Chem. Phys. 89, 7382.

    Article  CAS  Google Scholar 

  41. G. E. Scuseria and H. F. Schaefer (1989). J. Chem. Phys. 90, 3700.

    Article  CAS  Google Scholar 

  42. Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox (2016). Gaussian, Inc., Wallingford CT.

  43. F. Neese (2008). ORCA, An Ab Initio Density Functional and Semiempirical Program Package, version 3.0.2, Universität Bonn, Bonn, Germany.

  44. J. M. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria (2003). Phys. Rev. Lett. 91, 146401.

    Article  PubMed  Google Scholar 

  45. R. Peverati and D. G. Truhlar (2011). J. Phys. Chem. Lett. 2, 2810.

    Article  CAS  Google Scholar 

  46. A. E. Reed, F. Weinhold, and L. A. Curtiss (1998). Chem. Rev. 88, 899.

    Article  Google Scholar 

  47. R. W. F. Bader, Atoms in Molecules: A Quantum Theory (Oxford University Press, Oxford, 1990).

    Google Scholar 

  48. B. Silvi and A. Savin (1994). Nature 371, 683.

    Article  CAS  Google Scholar 

  49. A. D. Becke and K. E. Edgecombe (1990). J. Chem. Phys. 92, 5397.

    Article  CAS  Google Scholar 

  50. T. Lu and F. Chen (2012). J. Comput. Chem. 33, 580.

    Article  PubMed  Google Scholar 

  51. P. Pyykkö (2015). J. Phys. Chem. A. 119, 2326.

    Article  PubMed  Google Scholar 

  52. J. Chandrasekhar, E. D. Jemmis, and P. V. R. Schleyer (1979). Tetrahedron Lett. 20, 3707.

    Article  Google Scholar 

  53. For the first experimental evidence of dual aromaticity see S. Furukawa, M. Fujita, Y. Kanatomi, M. Minoura, M. Hatanaka, K. Morokuma, K. Ishimura, and M. Saito (2018). Commun. Chem. 1, 60.

  54. M.-H. Wang, C. Chen, S. Pan, and Cui Z-H (2021). Chem. Sci. 12, 15067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. S. Noorizadeh and E. Shakerzadeh (2010). Phys. Chem. Chem. Phys. 12, 4742.

    Article  CAS  PubMed  Google Scholar 

  56. J. C. Santos, W. Tiznado, and R. Contreras (2004). J. Chem. Phys. 120, 1670.

    Article  CAS  PubMed  Google Scholar 

  57. J. C. Santos, J. Andres, A. Aizmen, and P. Fuentealba (2005). J. Chem. Theory. Comput. 1, 83–86.

    Article  PubMed  Google Scholar 

  58. J. V. Ortiz (1988). J. Chem. Phys. 89, 6348.

    Article  CAS  Google Scholar 

  59. L. S. Cederbaum (1975). J. Phys. B. B8, 290.

    Article  Google Scholar 

  60. W. von Niessen, J. Schirmer, and L. S. Cederbaum (1984). Comp. Phys. Rep. 1, 57.

    Article  Google Scholar 

  61. J. M. Slattery and S. Hussein (2012). Dalton Transac. 41, 1808.

    Article  CAS  Google Scholar 

  62. W. Grochala and P. P. Edwards (2004). Chem. Rev. 104, 1283 and references therein.

    Article  CAS  PubMed  Google Scholar 

  63. R. O. Colclough (1959). J. Polym. Sci. 34, 171.

    Article  CAS  Google Scholar 

  64. E. J. Vandenberg (1960). J. Polym. Sci. 47, 486.

    Article  CAS  Google Scholar 

Download references

Funding

A. K. G. thanks the Science and Engineering Research Board (SERB), Government of India for providing financial assistance in the form of a project (Project No. ECR/2016/001466).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dimpul Konwar or Ankur K. Guha.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 219 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalita, A.J., Rohman, S.S., Kashyap, C. et al. Planar Octacoordinate Aluminium in Dual Aromatic AlBe4N4 Cluster. J Clust Sci 34, 1133–1139 (2023). https://doi.org/10.1007/s10876-022-02295-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02295-6

Keywords

Navigation