Skip to main content
Log in

Four-dimensional heteronuclear correlation experiments for chemical shift assignment of solid proteins

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Chemical shift assignment is the first step in all established protocols for structure determination of uniformly labeled proteins by NMR. The explosive growth in recent years of magic-angle spinning (MAS) solid-state NMR (SSNMR) applications is largely attributable to improved methods for backbone and side-chain chemical shift correlation spectroscopy. However, the techniques developed so far have been applied primarily to proteins in the size range of 5–10 kDa, despite the fact that SSNMR has no inherent molecular weight limits. Rather, the degeneracy inherent to many 2D and 3D SSNMR spectra of larger proteins has prevented complete unambiguous chemical shift assignment. Here we demonstrate the implementation of 4D backbone chemical shift correlation experiments for assignment of solid proteins. The experiments greatly reduce spectral degeneracy at a modest cost in sensitivity, which is accurately described by theory. We consider several possible implementations and investigate the CANCOCX pulse sequence in detail. This experiment involves three cross polarization steps, from H to CA[i], CA[i] to N[i], and N[i] to C′[i−1], followed by a final homonuclear mixing period. With short homonuclear mixing times (<20 ms), backbone correlations are observed with high sensitivity; with longer mixing times (>200 ms), long-range correlations are revealed. For example, a single 4D experiment with 225 ms homonuclear mixing time reveals ∼200 uniquely resolved medium and long-range correlations in the 56-residue protein GB1. In addition to experimental demonstrations in the 56-residue protein GB1, we present a theoretical analysis of anticipated improvements in resolution for much larger proteins and compare these results in detail with the experiments, finding good agreement between experiment and theory under conditions of stable instrumental performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aggarwal K, Delsuc M (1997) Triangular sampling of multidimensional NMR data sets. Magn Reson Chem 35:593–596

    Article  Google Scholar 

  • Baldus M, Geurts DG, Hediger S, Meier BH (1996) Efficient 15N-13C polarization transfer by adiabatic-passage Hartmann-Hahn cross polarization. J Magn Reson A 118:140–144

    Article  Google Scholar 

  • Baldus M, Petkova AT, Herzfeld JH, Griffin RG (1998) Cross polarization in the tilted frame: Assignment and spectral simplification in heteronuclear spin systems. Mol Phys 95:1197–1207

    Article  ADS  Google Scholar 

  • Barkhuijsen H, Debeer R, Vanormondt D (1987) Improved algorithm for noniterative time-domain model-fitting to exponentially damped magnetic-resonance signals. J Magn Reson 73:553–557

    Google Scholar 

  • Bennett AE, Ok JH, Griffin RG, Vega S (1992) Chemical shift correlation spectroscopy in rotating solids: Radio-frequency dipolar recoupling and longitudinal exchange. J Chem Phys 96:8624–8627

    Article  ADS  Google Scholar 

  • Bennett AE, Rienstra CM, Auger M, Lakshmi KV, Griffin RG (1995) Heteronuclear decoupling in rotating solids. J Chem Phys 103:6951–6958

    Article  ADS  Google Scholar 

  • Bennett AE, Rienstra CM, Griffiths JM, Zhen W, Lansbury PT Jr, Griffin RG (1998) Homonuclear radio frequency-driven recoupling in rotating solids. J Chem Phys 108:9463–9479

    Article  ADS  Google Scholar 

  • Bloembergen N (1949) On the interaction of nuclear spins in a crystalline lattice. Physica 15:386

    Article  ADS  Google Scholar 

  • Bockmann A, Lange A, Galinier A, Luca S, Giraud N, Juy M, Heise H, Montserret R, Penin F, Baldus M (2003) Solid state NMR sequential resonance assignments and conformational analysis of the 2 × 10.4 kDa dimeric form of the bacillus subtilis protein crh. J Biomol NMR 27:323–339

    Article  Google Scholar 

  • Carravetta M, Eden M, Zhao X, Brinkmann A, Levitt MH (2000) Symmetry principles for the design of radiofrequency pulse sequences in the nuclear magnetic resonance of rotating solids. Chem Phys Lett 321:205–215

    Article  ADS  Google Scholar 

  • Carravetta M, Zhao X, Johannessen OG, Lai WC, Verhoeven MA, Bovee-Geurts PHM, Verdegem PJE, Kiihne S, Luthman H, De Groot HJM, DeGrip WJ, Lugtenburg J, Levitt MH (2004) Protein-induced bonding perturbation of the rhodopsin chromophore detected by double-quantum solid-state NMR. J Am Chem Soc 126:3948–3953

    Article  Google Scholar 

  • Castellani F, van Rossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420:98–102

    Article  ADS  Google Scholar 

  • Castellani F, van Rossum BJ, Diehl A, Rehbein K, Oschkinat H (2003) Determination of solid-state NMR structures of proteins by means of three-dimensional 15N-13C-13C dipolar correlation spectroscopy and chemical shift analysis. Biochemistry 42:11476–11483

    Article  Google Scholar 

  • Cole HBR, Torchia DA (1991) An NMR-study of the backbone dynamics of staphylococcal nuclease in the crystalline state. Chem Phys 158:271–281

    Article  Google Scholar 

  • Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13:289–302

    Article  Google Scholar 

  • Costa PR, Sun BQ, Griffin RG (1997) Rotational resonance tickling: Accurate internuclear distance measurements in solids. J Am Chem Soc 119:10821–10830

    Article  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRpipe - a multidimensional spectral processing system based on unix pipes. J Biomol NMR 6:277–293

    Article  Google Scholar 

  • Detken A, Hardy EH, Ernst M, Kainosho M, Kawakami T, Aimoto S, Meier BH (2001) Methods for sequential resonance assignment in solid, uniformly C-13, N-15 labelled peptides: Quantification and application to antamanide. J Biomol NMR 20:203–221

    Article  Google Scholar 

  • Etzkorn M, Martell S, Andronesi OC, Seidel K, Engelhard M, Baldus M (2007) Secondary structure, dynamics, and topology of a seven-helix receptor in native membranes, studied by solid-state NMR spectroscopy. Angew Chem Int Ed 46:459–462

    Article  Google Scholar 

  • Flynn PF, Milton MJ, Babu CR, Wand AJ (2002) A simple and effective NMR cell for studies of encapsulated proteins dissolved in low viscosity solvents. J Biomol NMR 23:311–316

    Article  Google Scholar 

  • Franks WT, Wylie BJ, Stellfox SA, Rienstra CM (2006) Backbone conformational constraints in a microcrystalline U-15N-labeled protein by 3D dipolar-shift solid-state NMR spectroscopy. J Am Chem Soc 128:9992–9993

    Article  Google Scholar 

  • Franks WT, Zhou DH, Wylie BJ, Money BG, Graesser DT, Frericks HL, Sahota G, Rienstra CM (2005) Magic-angle spinning solid-state NMR spectroscopy of the beta 1 immunoglobulin binding domain of protein G (GB1): N-15 and C-13 chemical shift assignments and conformational analysis. J Am Chem Soc 127:12291–12305

    Article  Google Scholar 

  • Frericks HL, Zhou DH, Yap L, Gennis RB, Rienstra CM (2006) Magic-angle spinning solid-state NMR of a 144 kda membrane protein complex: E. coli cytochrome bo3 oxidase. J Biomol NMR 36:55–71

    Article  Google Scholar 

  • Fung BM, Khitrin AK, Ermolaev K (2000) An improved broadband decoupling sequence for liquid crystals and solids. J Magn Reson 142:97–101

    Article  ADS  Google Scholar 

  • Gardner KH, Zhang XC, Gehring K, Kay LE (1998) Solution NMR studies of a 42 kda escherichia coli maltose binding protein beta-cyclodextrin complex: Chemical shift assignments and analysis. J Am Chem Soc 120:11738–11748

    Article  Google Scholar 

  • Goddard TD, Kneller DG (2006) Sparky 2.116. University of California, San Francisco

  • Havlin RH, Tycko R (2005) Probing site-specific conformational distributions in protein folding with solid-state NMR. Proc Natl Acad Sci USA 102:3284–3289

    Article  ADS  Google Scholar 

  • Hediger S, Meier BH, Ernst RR (1995) Adiabatic passage Hartmann-Hahn cross-polarization in NMR under magic-angle sample-spinning. Chem Phys Lett 240:449–456

    Article  ADS  Google Scholar 

  • Heise H, Hoyer W, Becker S, Andronesi OC, Riedel D, Baldus M (2005) Molecular-level secondary structure, polymorphism, and dynamics of full-length alpha-synuclein fibrils studied by solid-state NMR. Proc Natl Acad Sci USA 102:15871–15876

    Article  ADS  Google Scholar 

  • Hiller M, Krabben L, Vinothkumar KR, Castellani F, Van Rossum B-J, Kühlbrandt W, Oschkinat H (2005) Solid-state magic-angle spinning NMR of outer-membrane protein g from Escherichia coli. ChemBioChem 6:1679–1684

    Article  Google Scholar 

  • Hing A, Vega S, Schaefer J (1992) Transferred-echo double-resonance NMR. J Magn Reson 96:205–209

    Google Scholar 

  • Hoch JC, Stern AS (2001) Maximum entropy reconstruction, spectrum analysis and deconvolution in multidimensional nuclear magnetic resonance, Meth Enzym 338:159–178

    Google Scholar 

  • Hohwy M, Jakobsen HJ, Edén M, Levitt MH, Nielsen NC (1998) Broadband dipolar recoupling in the nuclear magnetic resonance of rotating solids: A compensated C7 pulse sequence. J Chem Phys 108:2686–94

    Article  ADS  Google Scholar 

  • Hohwy M, Rienstra CM, Jaroniec CP, Griffin RG (1999) Fivefold symmetric homonuclear dipolar recoupling in rotating solids: Application to double quantum spectroscopy, J Chem Phys 110:7983–7992

    Article  ADS  Google Scholar 

  • Hong M (1999) Resonance assignment of C-13/N-15 labeled solid proteins by two- and three-dimensional magic-angle-spinning NMR. J Biomol NMR 15:1–14

    Article  Google Scholar 

  • Hu JG, Sun BQ, Griffin RG, Herzfeld J (1995) Solid state NMR detection of multiple m-intermediates in bacteriorhodopsin. Biophys J 68:A332

    Google Scholar 

  • Igumenova TI, McDermott AE (2005) Homo-nuclear C-13 J-decoupling in uniformly C-13-enriched solid proteins. J Magn Reson 175:11–20

    Article  ADS  Google Scholar 

  • Igumenova TI, McDermott AE, Zilm KW, Martin RW, Paulson EK, Wand AJ (2004a) Assignments of carbon NMR resonances for microcrystalline ubiquitin. J Am Chem Soc 126:6720–6727

    Article  Google Scholar 

  • Igumenova TI, Wand AJ, McDermott AE (2004b) Assignment of the backbone resonances for microcrystalline ubiquitin. J Am Chem Soc 126:5323–5331

    Article  Google Scholar 

  • Ishii Y (2001) C-13-C-13 dipolar recoupling under very fast magic angle spinning in solid-state nuclear magnetic resonance: Applications to distance measurements, spectral assignments, and high-throughput secondary-structure determination. J Chem Phys 114:8473–8483

    Article  ADS  Google Scholar 

  • Ishii Y, Ashida J, Terao T (1995) 13C-1H dipolar recoupling dynamics in 13C multiple-pulse solid-state NMR. Chem Phys Lett 246:439–445

    Article  ADS  Google Scholar 

  • Jovanovic T, Farid R, Friesner RA, McDermott AE (2005) Thermal equilibrium of high- and low-spin forms of cytochrome p450 bm-3: Repositioning of the substrate? J Am Chem Soc 127:13548–13552

    Article  Google Scholar 

  • Kim S, Szyperski T (2003) GFT NMR, a new approach to rapidly obtain precise high-dimensional NMR spectral information. J Am Chem Soc 125:1385–1393

    Article  Google Scholar 

  • Kloepper KD, Woods WS, Winter KA, George JM, Rienstra CM (2006) Preparation of alpha-synuclein fbrils for solid-state NMR: Expression, purification and incubation of wild type and mutant forms. Protein Expr Purif 48:112–117

    Article  Google Scholar 

  • Kumar A, Ernst RR, Wüthrich K (1980) A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules. Biochem Biophys Res Commun 95:1–6

    Article  Google Scholar 

  • Kupce E, Freeman R (2004) Projection-reconstruction technique for speeding up multidimensional NMR spectroscopy. J Am Chem Soc 126:6429–6440

    Article  Google Scholar 

  • Lange A, Becker S, Seidel K, Giller K, Pongs O, Baldus M (2005) A concept for rapid protein-structure determination by solid-state NMR spectroscopy. Angew Chem Int Ed 44:2089–2092

    Article  Google Scholar 

  • Lange A, Giller K, Hornig S, Martin-Eauclaire M-F, Pongs O, Becker S, Baldus M (2006) Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR. Nature 440:959–962

    Article  ADS  Google Scholar 

  • Lee YK, Kurur ND, Helmle M, Johannessen OG, Nielsen NC, Levitt MH (1995) Efficient dipolar recoupling in the NMR of rotating solids - a sevenfold symmetrical radiofrequency pulse sequence. Chem Phys Lett 242:304–309

    Article  ADS  Google Scholar 

  • Li Y, Berthold DA, Frericks HL, Gennis RB, Rienstra CM (2007) Partial 13C and 15N chemical shift assignments of the disulfide bond forming enzyme DsbB by 3D magic-angle spinning NMR spectroscopy. ChemBioChem 8:434–442

    Article  MATH  Google Scholar 

  • Li Y, Wylie BJ, Rienstra CM (2006) Selective refocusing pulses in magic-angle spinning NMR: Characterization and applications to multidimensional protein spectroscopy. J Magn Reson 179:206–216

    Article  ADS  Google Scholar 

  • Marion D, Wüthrich K (1983) Application of phase sensitive two-dimensional correlated spectroscopy (cosy) for measurements of H-1-H-1 spin-spin coupling-constants in proteins. Biochem Biophys Res Commun 113:967–974

    Article  Google Scholar 

  • Markley JL, Bax A, Arata Y, Hilbers CW, Kaptein R, Sykes BD, Wright PE, Wüthrich K (1998) Recommendations for the presentation of NMR structures of proteins and nucleic acids – (IUPAC Recommendations 1998). Pure Appl Chem 70:117–142

    Article  Google Scholar 

  • Martin RW, Paulson EK, Zilm KW (2003) Design of a triple resonance magic angle sample spinning probe for high field solid state nuclear magnetic resonance. Rev Sci Instrum 74:3045–3061

    Article  ADS  Google Scholar 

  • Martin RW, Zilm KW (2003) Preparation of protein nanocrystals and their characterization by solid state NMR. J Magn Reson 165:162–174

    Article  ADS  Google Scholar 

  • Marulanda D, Tasayco ML, Cataldi M, Arriaran V, Polenova T (2005) Resonance assignments and secondary structure analysis of e. Coli thioredoxin by magic angle spinning solid-state NMR spectroscopy. J Phys Chem B 109:18135–18145

    Article  Google Scholar 

  • Marulanda D, Tasayco ML, McDermott A, Cataldi M, Arriaran V, Polenova T (2004) Magic angle spinning solid-state NMR spectroscopy for structural studies of protein interfaces. Resonance assignments of differentially enriched escherichia coli thioredoxin reassembled by fragment complementation. J Am Chem Soc 126:16608–16620

    Article  Google Scholar 

  • McDermott A, Polenova T, Bockmann A, Zilm KW, Paulsen EK, Martin RW, Montelione GT (2000) Partial NMR assignments for uniformly (C-13, N-15)-enriched BPTI in the solid state. J Biomol NMR 16:209–219

    Article  Google Scholar 

  • McDowell LM, Klug CA, Beusen DD, Schaefer J (1996a) Ligand geometry of the ternary complex of 5-enolpyruvylshikimate-3-phosphate synthase from rotational-echo double-resonance NMR. Biochemistry 35:5395–5403

    Article  Google Scholar 

  • McDowell LM, Lee MS, McKay RA, Anderson KS, Schaefer J (1996b) Intersubunit communication in tryptophan synthase by carbon-13 and flourine-19 REDOR NMR. Biochemistry 35:3328–3334

    Article  Google Scholar 

  • McDowell LM, Poliks B, Studelska DR, O’Connor RD, Beusen DD, Schaefer J (2004) Rotational-echo double-resonance NMR-restrained model of the ternary complex of 5-enolpyruvylshikimate-3-phosphate synthase. J Biomol NMR 28:11–29

    Article  Google Scholar 

  • Morcombe CR, Gaponenko V, Byrd RA, Zilm KW (2004) Diluting abundant spins by isotope edited radio frequency field assisted diffusion. J Am Chem Soc 126:7196–7197

    Article  Google Scholar 

  • Morcombe CR, Zilm KW (2003) Chemical shift referencing in mas solid state NMR. J Magn Reson 162:479–486

    Article  ADS  Google Scholar 

  • Pauli J, Baldus M, van Rossum B, de Groot H, Oschkinat H (2001) Backbone and side-chain 13C and 15N resonance assignments of the alpha-spectrin SH3 domain by magic angle spinning solid state NMR at 17.6 tesla. ChemBioChem 2:272–281

    Article  Google Scholar 

  • Pauli J, van Rossum B, Forster H, de Groot HJM, Oschkinat H (2000) Sample optimization and identification of signal patterns of amino acid side chains in 2D RFDR spectra of the alpha-spectrin SH3 domain. J Magn Reson 143:411–416

    Article  ADS  Google Scholar 

  • Paulson EK, Martin RW, Zilm KW (2004) Cross polarization, radio frequency field homogeneity, and circuit balancing in high field solid state NMR probes. J Magn Reson 171:314–323

    Article  ADS  Google Scholar 

  • Petkova AT, Leapman RD, Guo ZH, Yau WM, Mattson MP, Tycko R (2005) Self-propagating, molecular-level polymorphism in Alzheimer’s beta-amyloid fibrils. Science 307:262–265

    Article  ADS  Google Scholar 

  • Petkova AT, Leapman RD, Yau WM, Tycko R (2004) Structural investigations of alzheimer’s beta-amyloid fibrils by solid state NMR. Biophys J 86:506A-506A

    Article  Google Scholar 

  • Pintacuda G, Giraud N, Pierattelli R, Böckmann A, Bertini I, Emsley L (2006) Solid-state NMR spectroscopy of a paramagnetic protein: assignment and study of human dimeric oxidized Cu(II)-Zn(II) superoxide dismutase (SOD). Angew Chem Int Ed 46:1079–1082

    Article  Google Scholar 

  • Raleigh DP, Levitt MH, Griffin RG (1988) Rotational resonance in solid state NMR. Chem Phys Lett 146:71–76

    Article  ADS  Google Scholar 

  • Ravindranathan KP, Gallicchio E, McDermott AE, Levy RM (2007) Conformational dynamics of substrate in the active site of cytochrome p450 bm-3/npg complex: Insights from NMR order parameters. J Am Chem Soc 129:474–475

    Article  Google Scholar 

  • Rienstra CM, Hohwy M, Hong M, Griffin RG (2000) 2D and 3D N-15-C-13-C-13 NMR chemical shift correlation spectroscopy of solids: Assignment of mas spectra of peptides. J Am Chem Soc 122:10979–10990

    Article  Google Scholar 

  • Ritter C, Maddelein M-L, Siemer AB, Luhrs T, Ernst M, Meier BH, Saupe SJ, Riek R (2005) Correlation of structural elements and infectivity of the HET-s prion. Nature 435:844–848

    Article  ADS  Google Scholar 

  • Schaefer J, Stejskal EO (1979) Double cross polarization NMR of solids. J Magn Reson 34:443–447

    Google Scholar 

  • Seidel K, Lange A, Becker S, Hughes CE, Heise H, Baldus M (2004) Protein solid-state NMR resonance assignments from (C-13, C-13) correlation spectroscopy. Phys Chem Chem Phys 6:5090–5093

    Article  Google Scholar 

  • Siemar AB, Ritter C, Ernst M, Riek R, Meier BH (2005) High-resolution solid-state NMR spectroscopy of the prion protein HET-s in its amyloid conformation. Angew Chem Int Ed 44:2441–2444

    Article  Google Scholar 

  • Siemer AB, Ritter C, Steinmetz MO, Ernst M, Riek R, Meier BH (2006) 13C, 15N resonance assignment of the het-s prion protein in its amyloid form. J Biomol NMR 34:75–87

    Article  Google Scholar 

  • Sonnenberg L, Luca S, Baldus M (2004) Multiple-spin analysis of chemical-shift-selective (C-13, C-13) transfer in uniformly labeled biomolecules. J Magn Reson 166:100–110

    Article  ADS  Google Scholar 

  • Stringer JA, Bronnimann CE, Mullen CG, Zhou DHH, Stellfox SA, Li Y, Williams EH, Rienstra CM (2005) Reduction of rf-induced sample heating with a scroll coil resonator structure for solid-state NMR probes. J Magn Reson 173:40–48

    Article  ADS  Google Scholar 

  • Stueber D, Mehta AK, Chen ZY, Wooley KL, Schaefer J (2006) Local order in polycarbonate glasses by C-13{F-19} rotational-echo double-resonance NMR. J Polym Sci Part B: Polym Phys 44:2760–2775

    Article  Google Scholar 

  • Suter D, Ernst RR (1985) Spin diffusion in resolved solid state NMR spectra. Phys Rev B 32:5608–5627

    Article  ADS  Google Scholar 

  • Szyperski T, Yeh D, Sukumaran D, Moseley H, Montelione G (2002) Reduced-dimensionality NMR spectroscopy for high-throughput protein resonance assignment. Proc Natl Acad Sci USA 99:8009–8014

    Article  ADS  Google Scholar 

  • Takegoshi K, Nakamura S, Terao T (2003) C-13-H-1 dipolar-driven C-13-C-13 recoupling without C-13 rf irradiation in nuclear magnetic resonance of rotating solids. J Chem Phys 118:2325–2341

    Article  ADS  Google Scholar 

  • Takegoshi K, Nomura K, Terao T (1995) Rotational resonance in the tilted rotating frame. Chem Phys Lett 232:424–428

    Article  ADS  Google Scholar 

  • Tugarinov V, Muhandiram R, Ayed A, Kay L (2002) Four-dimensional NMR spectroscopy of a 723-residue protein: Chemical shift assignments and secondary structure of malate synthase g. J Am Chem Soc 124:10025–10035

    Article  Google Scholar 

  • Tycko R (1996) Prospects for resonance assignments in multidimensional solid-state NMR spectra of uniformly labeled proteins. J Biomol NMR 8:239–251

    Article  Google Scholar 

  • Tycko R (2004) Progress towards a molecular-level structural understanding of amyloid fibrils. Curr Opin Struct Biol 14:96–103

    Article  Google Scholar 

  • Van Geet AL (1968) Calibration of the methanol and glycol nuclear magnetic resonance thermometers with a static thermistor probe. Anal Chem 40:2227–2229

    Article  Google Scholar 

  • Wylie BJ, Franks WT, Rienstra CM (2006) Determinations of 15N chemical shift anisotropy magnitudes in a uniformly 15N,13C-labeled microcrystalline proteins by three-dimensional magic-angle spinning NMR spectroscopy. J Phys Chem B 110:10926–10936

    Article  Google Scholar 

  • Zech SG, Wand AJ, McDermott AE (2005) Protein structure determination by high-resolution solid-state NMR spectroscopy: application to microcrystalline ubiquitin. J Am Chem Soc 127:8618–8626

    Article  Google Scholar 

Download references

Acknowledgments

We thank G. Shah and H. Frericks for preparing the GB1 samples used in this study. This work was supported by the University of Illinois, National Science Foundation (CAREER Award MCB0347824 to CMR), Research Corporation (Cottrell Scholars Awards to CMR) and National Institutes of Health (GM073770 to CMR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chad M. Rienstra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franks, W.T., Kloepper, K.D., Wylie, B.J. et al. Four-dimensional heteronuclear correlation experiments for chemical shift assignment of solid proteins. J Biomol NMR 39, 107–131 (2007). https://doi.org/10.1007/s10858-007-9179-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-007-9179-1

Keywords

Navigation