Skip to main content

Advertisement

Log in

Contributions of adhesive proteins to the cellular and bacterial response to surfaces treated with bioactive polymers: case of poly(sodium styrene sulfonate) grafted titanium surfaces

  • Special Issue: ESB 2015
  • Biomaterials Synthesis and Characterisation
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The research developed on functionalized model or prosthetic surfaces with bioactive polymers has raised the possibility to modulate and/or control the biological in vitro and in vivo responses to synthetic biomaterials. The mechanisms underlying the bioactivity exhibited by sulfonated groups on surfaces involves both selective adsorption and conformational changes of adsorbed proteins. Indeed, surfaces functionalized by grafting poly(sodium styrene sulfonate) [poly(NaSS)] modulate the cellular and bacterial response by inducing specific interactions with fibronectin (Fn). Once implanted, a biomaterial surface is exposed to a milieu of many proteins that compete for the surface which dictates the subsequent biological response. Once understood, this can be controlled by dictating exposure of active binding sites. In this in vitro study, we report the influence of binary mixtures of proteins [albumin (BSA), Fn and collagen type I (Col I)] adsorbed on poly(NaSS) grafted Ti6Al4V on the adhesion and differentiation of MC3T3-E1 osteoblast-like cells and the adhesion and proliferation of Staphylococcus aureus (S. aureus). Outcomes showed that poly(NaSS) stimulated cell spreading, attachment strength, differentiation and mineralization, whatever the nature of protein provided at the interface compared with ungrafted Ti6Al4V (control). While in competition, Fn and Col I were capable of prevailing over BSA. Fn played an important role in the early interactions of the cells with the surface, while Col I was responsible for increased alkaline phosphatase, calcium and phosphate productions associated with differentiation. Poly(NaSS) grafted surfaces decreased the adhesion of S. aureus and the presence of Fn on these chemically altered surfaces increased bacterial resistance ≈70 % compared to the ungrafted Ti6Al4V. Overall, our study showed that poly(NaSS) grafted Ti6Al4V selectively adsorbed proteins (particularly Fn) promoting the adhesion and differentiation of osteoblast-like cells while reducing bacterial adhesion to create a bioactive surface with potential for orthopaedic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hirsh SL, McKenzie DR, Nosworthy NJ, Denman JA, Sezerman OU, Bilek MM. The Vroman effect: competitive protein exchange with dynamic multilayer protein aggregates. Colloids Surf B. 2013;103:395–404.

    Article  Google Scholar 

  2. Gong P, Szleifer I. Competitive adsorption of model charged proteins: the effect of total charge and charge distribution. J Colloid Interface Sci. 2004;278:81–90.

    Article  Google Scholar 

  3. Michiardi A, Aparicio C, Ratner BD, Planell JA, Gil J. The influence of surface energy on competitive protein adsorption on oxidized NiTi surfaces. Biomaterials. 2007;28:586–94.

    Article  Google Scholar 

  4. Chen H, Yuan L, Song W, Wu Z, Li D. Biocompatible polymer materials: role of protein-surface interfaces. Prog Polym Sci. 2008;33:1059–87.

    Article  Google Scholar 

  5. Bacáková L, Filová E, Pypácek F, Svorcik V, Stary V. Cell adhesion or artificial materials for tissue engineering. Physiol Res. 2004;53:35–45.

    Google Scholar 

  6. Anselme K. Osteoblast adhesion on biomaterials. Biomaterials. 2000;21:667–81.

    Article  Google Scholar 

  7. Potts JR, Campbell ID. Structure and function of fibronectin modules. Matrix Biol. 1996;15:313–20.

    Article  Google Scholar 

  8. Johansson S, Svineng G, Wennerberg K, Armulik A, Lohikangas L. Fibronectin-integrin interactions. Front Biosci. 1997;2:126–46.

    Google Scholar 

  9. Boughton BJ, Simpson AW. The biochemical and functional heterogeneity of circulating human plasma fibronectin. Biochem Biophys Res Commun A. 2004;69A:525–34.

    Google Scholar 

  10. Kadler KE, Hill A, Canty-Laird EG. Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators. Curr Opin Cell Biol. 2008;20:495–501.

    Article  Google Scholar 

  11. Xu Y, Gurusiddappa S, Rich RL, Owens ET, Keenei DR, Mayne R, Hook A, Hook M. Multiple binding sites in collagen type I for the integrins & #x03B1;1β1 and & #x03B1;2β1. J Biol Chem. 2000;275:35–40.

    Article  Google Scholar 

  12. Pugdee K, Shibata Y, Yamamichi N, Tsutsumi H, Yoshinari M, Abiko Y, Hayakawa T. Gene expression of MC3T3-E1 cells on fibronectin-immobilized titanium using tresyl chloride activation technique. Dent Mater J. 2007;26:647–55.

    Article  Google Scholar 

  13. Rapuano BE, Hackshaw KM, Schniepp HC, MacDonald DE. Effects of coating a titanium alloy with fibronectin on the expression of osteoblast gene markers in the MC3T3 osteoprogenitor cell line. Int J Oral Maxillofac Implants. 2012;27:1081–90.

    Google Scholar 

  14. Morra M, Cassinelli C, Cascardo G, Cahalan P, Cahalan L, Fini M, Giardino R. Surface engineering of titanium by collagen immobilization. Surface characterization and in vitro and in vivo studies. Biomaterials. 2003;24:4639–54.

    Article  Google Scholar 

  15. Van der Dolder J, Jansen JA. The response of osteoblast-like cells towards collagen type I coating immobilized by p-nitrophenylchloroformate to titanium. J Biomed Mater Res A. 2007;83:712–9.

    Article  Google Scholar 

  16. Pegueroles M, Tonda-Turo C, Planell JA, Gil F-J, Aparicio C. Adsorption of fibronectin, fibrinogen and albumin on TiO2: time-resolved kinetics, structural changes and competition study. Biointerphases. 2012;7:1–13.

    Article  Google Scholar 

  17. Darouiche RO. Treatment of infections associated with surgical implants. N Engl J Med. 2004;350:1422–9.

    Article  Google Scholar 

  18. Sia IG, Berbari EF, Karchmer AW. Prosthetic joint infections. Infect Dis Clin North Am. 2005;19:885–914.

    Article  Google Scholar 

  19. Harris LG, Tosatti S, Wieland M, Textor M, Richards RG. Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(l-lysine)-grafted-poly(ethylene glycol) copolymers. Biomaterials. 2004;25:4135–48.

    Article  Google Scholar 

  20. Hélary G, Noirclere F, Mayingi J, Migonney V. A new approach to graft bioactive polymer on titanium implants: improvement of MG63 cell differentiation onto this coating. Acta Biomater. 2009;5:124–33.

    Article  Google Scholar 

  21. Michiardi A, Hélary G, Nguyen P-CT, Gamble LJ, Anagnostou F, Castner DG, Migonney V. Bioactive polymer grafting onto titanium alloy surfaces. Acta Biomater. 2010;6:667–75.

    Article  Google Scholar 

  22. Mayingi J, Hélary G, Noirclere F, Bacroix B, Migonney V. Grafting of bioactive polymers onto titanium surfaces and human osteoblasts response. IRBM. 2008;29:1–6.

    Article  Google Scholar 

  23. Van Oss CJ, Ju L, Chaudhury MK. Estimation of the polar parameters of the surface tension of liquids by contact angle measurements on gels. J Colloid Interface Sci. 1989;128:313–9.

    Article  Google Scholar 

  24. O’Brien J, Wilson I, Orton T, Pognan F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem. 2000;267:5421–6.

    Article  Google Scholar 

  25. Berlot S, Aissaoui Z, Pavon-Djavid G, Belleney J, Hélary G, Migonney V. Biomimetic poly(methyl methacrylate) based copolymers: modulation of bacterial adhesion effect. Biomacromolecules. 2002;3:63–8.

    Article  Google Scholar 

  26. Felgueiras H, Migonney V. Sulfonate groups grafted on Ti6Al4V favor MC3T3-E1 cell performance in serum free medium conditions. Mater Sci Eng C. 2014;39:196–202.

    Article  Google Scholar 

  27. Sebé-Pedrós A, Ruiz-Trilho I. Integrin-mediated adhesion complex. Commun Integr Biol. 2010;3:475–7.

    Article  Google Scholar 

  28. Harburger DS, Calderwood DA. Integrin signaling at a glance. J Cell Sci. 2009;122:159–63.

    Article  Google Scholar 

  29. Krammer A, Craig D, Thomas WE, Schulten K, Vogel A. A structural model for force regulated integrin binding to fibronectin’s RGD-synergy site. Matrix Biol. 2002;21:139–47.

    Article  Google Scholar 

  30. El Khadali F, Helary G, Pavon-Djavid G, Migonney V. Modulating fibroblas cell proliferation with functionalized poly(methyl methacrylate) based copolymers: chemical composition and monomer distribution effect. Biomacromolecules. 2002;3:51–6.

    Article  Google Scholar 

  31. Latz C, Pavon-Djavid G, Helary G, Evans M, Migonney V. Alternative intracellular signaling mechanisms involved in the inhibitory biological response of functionalized PMMA-based polymers. Biomacromolecules. 2003;4:766–71.

    Article  Google Scholar 

  32. Felgueiras HP, Sanjeeva NS, Sommerfeld SD, Kohn J, Migonney V. Poly(NaSS) functionalized Ti6Al4V substrates enhance osteoblastic cell attachment by altering fibronectin presentation. Langmuir. 2014;30:9477–83.

    Article  Google Scholar 

  33. Horbet TA. Proteins: structure, properties and adsorption to surfaces. In: Ratner BD, editor. Biomaterials Science: an introduction to materials in medicine. New York: Academic Press, Inc.; 1996. p.133–141.

    Chapter  Google Scholar 

  34. Molino PJ, Higgins MJ, Innis PC, Kapsa RM, Wallace GG. Fibronectin and bovine serum albumin adsorption and conformational dynamics on inherently conducting polymers: a QCM-D study. Langmuir. 2012;28:8433–45.

    Article  Google Scholar 

  35. Perkins ME, Ji TH, Hynes RO. Cross-linking of fibronectin to sulfated proteoglycans at the cell surface. Cell. 1979;16:941–52.

    Article  Google Scholar 

  36. Williams EC, Janmey PA, Ferry JD, Mosher DF. Conformational states of fibronectin. Effects of pH, ionic strength, and collagen binding. J Biol Chem. 1982;25:14973–149748.

    Google Scholar 

  37. Oughlis S, Lessim S, Changotade S, Poirier F, Bollotte F, Peltzer J, Felgueiras H, Migonney V, Lataillade JJ, Lutomski D. The osteogenic differentiation improvement of human mesenchymal stem cells on titanium grafted with polyNaSS bioactive polymer. J Biomed Mater Res A. 2012;101A:582–9.

    Article  Google Scholar 

  38. Angwarawong T, Dubas ST, Arksornnukit M, Pavasant P. Differentiation of MC3T3-E1 on poly(4-styrenesulfonit acid-co-maleic acid)sodium salt-coated films. Dent Mater J. 2011;30:158–69.

    Article  Google Scholar 

  39. Mizuno M, Fujisawa R, Kuboki Y. Type I collagen-induced osteoblastic differentiation of bone-marrow cells mediated by collagen-α2β1 integrin interaction. J Cell Physiol. 2000;184:207–13.

    Article  Google Scholar 

  40. Lynch M, Stein JL, Stein GS, Lian J. The influence of type I collagen on the development and maintenance of the osteoblastic phenotype in primary and passaged rat calvaria osteoblasts: modification of expression of genes supporting gene growth, adhesion and extracellular matrix mineralization. Exp Cell Res. 1995;216:35–45.

    Article  Google Scholar 

  41. Takeuchi Y, Nakayama K, Matsumoto T. Differentitation and cell surface expression of transforming growth factor-beta receptors are regulated by interaction with matrix collagen in murine osteoblastic cycles. J Biol Chem. 1996;271:3938–44.

    Article  Google Scholar 

  42. Salasznyk RM, Williams WA, Boskey A, Batorsky A, Plopper GE. Adhesion to vitronectin and collagen I promotes osteogenic differentiation of human mesenchymal stem cells. J Biomed Biotechnol. 2004;2004:24–34.

    Article  Google Scholar 

  43. Higuchi C, Myoui A, Hashimoto N, Kurivama K, Yoshioka K, Yoshikawa H, Itoh K. Continuous inhibition of MAPK signalling promotes the early osteoblastic differentiation and mineralization of the extracellular matrix. J Bone Miner Res. 2002;17:1785–94.

    Article  Google Scholar 

  44. Migonney V, Ben Aissa I, Lutomski D, Hélary G, Oughlis S, Poirier F, Changotade S, Peltzer J, Lataillade J-J, Blanquaert D, De Lambert B, Viateau V, Manassero M, Crémieux A-C, Saleh-Mghir A, Thomas D. Controlled cell adhesion and activity onto Ti6Al4V titanium alloy by grafting of the surface: elaboration of orthopaedic implants capable of preventing joint prosthesis infection. IRBM. 2013;34:180–5.

    Article  Google Scholar 

  45. Anagnostou F, Debet A, Pavon-Djavid G, Goudaby Z, Hélary G, Migonney V. Osteoblast functions on functionalized PMMA-based polymers exhibiting Staphylococcus aureus adhesion inhibition. Biomaterials. 2006;27:3912–9.

    Article  Google Scholar 

  46. An YH, Friedman RJ. Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J Biomed Mater Res. 1998;43:338–48.

    Article  Google Scholar 

  47. Leonard EF, Vroman L. Is the Vroman effect important in the interaction of blood with artificial materials? J Biomater Sci Polym. 1992;3:95–107.

    Article  Google Scholar 

  48. Brash JL, Thibodeau JA. Identification of proteins adsorbed from human plasma to glass bead columns: plasmin-induced degradation of adsorbed fibrinogen. J Biomed Mater Res. 1986;20:1263–75.

    Article  Google Scholar 

  49. Delmi M, Vaudaux P, Lew DP, Vasey H. Role of fibronectin in staphylococcal adhesion to metallic surfaces used as models of orthopaedic devices. J Orthop Res. 1994;12:432–8.

    Article  Google Scholar 

  50. McDowell SG, An YH, Draughn RA, Friedman RJ. Application of a fluorescent redox dye for enumeration of metabolically active bacteria on albumin-coated titanium surfaces. Lett Appl Microbiol. 1995;21:1–4.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the ANR society, program Tecsan, for the financial support of the ACTISURF project and the Ministère de la Recherche (France) for funding the scholarship of H.P.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Véronique Migonney.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Felgueiras, H.P., Aissa, I.B., Evans, M.D.M. et al. Contributions of adhesive proteins to the cellular and bacterial response to surfaces treated with bioactive polymers: case of poly(sodium styrene sulfonate) grafted titanium surfaces. J Mater Sci: Mater Med 26, 261 (2015). https://doi.org/10.1007/s10856-015-5596-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-015-5596-y

Keywords

Navigation