Skip to main content
Log in

Influence of the spark-plasma texturing conditions on the intragranular features of Bi-2223 ceramic samples

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The influence of the spark-plasma texturing (SPT) conditions on the intragranular superconducting properties of \(\hbox {Bi}_{1.65}\hbox {Pb}_{0.35}\hbox {Sr}_2\hbox {Ca}_2\hbox {Cu}_3\hbox {O}_{10+\delta }\) (Bi-2223) samples has been investigated. Also, the SPT samples were subjected to a post-annealing heat treatments (PAHT) in different times. Intragranular superconducting features, extracted from magnetoresistance measurements, \(\rho (T,H)\), in applied magnetic fields up to 9 T, were studied by analyzing the temperature dependence of the in-plane upper critical field, \(H^{ab}_\text{c2}(T)\), and the magnetic field dependence of the pinning energy at zero temperature, U(0, H). The results indicated that, before and after the PAHT, values of the \(H^{ab}_\text{c2}(0)\), obtained by using the Werthamer–Helfand–Hohenberg formula, increased \(\sim 21 \%\), i.e., from 115.8 to 140.2 T. We have also found that the effective intragranular pinning energy at zero applied magnetic field, \(U_0 = U(0,0)\), also increased over approximately three times, from 0.28 to 0.98 eV. These results strong strongly indicate that the SPT process is responsible for inducing deoxygenation at the intragranular level of ceramic samples, a feature presumably occurring near of the end of planar defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. O. Guillon, J. Gonzalez-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Räthel, M. Herrmann, Adv. Eng. Mater. 16, 830–849 (2014)

    Article  Google Scholar 

  2. M.Z. Becker, N. Shomrat, Y. Tsur, Adv. Mater, 30, e1706369 (2018)

    Article  Google Scholar 

  3. J.G. Noudem, D. Kenfaui, D. Chateigner, M. Gomina, Scr. Mater. 66, 258–260 (2012)

    Article  Google Scholar 

  4. L. Pérez-Acosta, E. Govea-Alcaide, J.G. Noudem, I.F. Machado, S.H. Masunaga, R.F. Jardim, Ceram. Int. 42, 13248–13255 (2016)

    Article  Google Scholar 

  5. E. Govea-Alcaide, I.F. Machado, R.F. Jardim, J. Appl. Phys. 117, 043903–043907 (2015)

    Article  Google Scholar 

  6. E. Govea-Alcaide, I.F. Machado, M. Bertolete-Carneiro, P. Muné, R.F. Jardim, J. Appl. Phys. 112, 113906–13913 (2012)

    Article  Google Scholar 

  7. U. Anselmi-Tamburini, S. Gennari, J.E. Garay, Z.A. Munir, Mater. Sci. Eng. A 394, 139–148 (2005)

    Article  Google Scholar 

  8. C. Wang, L. Cheng, Z. Zhao, Comput. Mater. Sci. 49, 351–362 (2010)

    Article  Google Scholar 

  9. F. Rosales-Saiz, L. Pérez-Acosta, I.F. Machado, J.E. Pérez-Fernández, R.F. Jardim, E. Govea-Alcaide, Ceram. Int. 42, 17482–17488 (2016)

    Article  Google Scholar 

  10. I. García-Fornaris, I. Calzada, E. Govea-Alcaide, I.F. Machado, R.F. Jardim, J. Supercond. Novel Magn. 28, 3487–3492 (2015)

    Article  Google Scholar 

  11. T.T. Palstra, B. Batlogg, L.F. Scheemeyer, J.V. Waszczak, Phys. Rev. B 43, 3756–3759 (1991)

    Article  Google Scholar 

  12. I. Matsubara, H. Tanigawa, T. Ogura, H. Yamashita, M. Kinoshita, T. Kawai, Phys. Rev. B 45, 7414–7417 (1992)

    Article  Google Scholar 

  13. M.T. Escote, V.A. Meza, R.F. Jardim, L. Ben-Dor, M.S. Torikachvili, A.H. Lacerda, Phys. Rev. B 66, 144503–144508 (2002)

    Article  Google Scholar 

  14. T.T.M. Palstra, B. Batlogg, R.B. van Dover, L.F. Schneemeyer, J.V. Waszczak, Phys. Rev. B 41, 6621–6632 (1990)

    Article  Google Scholar 

  15. E.S. Vlakhova, K.A. Nenkovb, M. Ciszekc, A. Zaleskic, Y.B. Dimitrievd, Physica C 225, 149–157 (1994)

    Article  Google Scholar 

  16. M. Dogruer, Y. Zalaoglu, A. Varilci, C. Terzioglu, G. Yildirim, O. Ozturk, J. Supercond. Novel Magn. 25, 961–968 (2012)

    Article  Google Scholar 

  17. G. Yildirim, M. Akdogan, S.P. Altintas, M. Erdem, C. Terzioglu, A. Varilci, Physica B 406, 1853–1857 (2011)

    Article  Google Scholar 

  18. G. Blatter, M.V. Feigelman, V.B. Geshkenbein, A.I. Larkin, V.M. Vinokur, Rev. Mod. Phys. 66, 1125–1388 (1994)

    Article  Google Scholar 

  19. M. Hernández-Wolpez, A. Cruz-García, O. Vázquez-Robaina, R.F. Jardim, P. Muné, Physica C 525–526, 84–88 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from Brazil’s agencies FAPESP (Grants Nos. 2013/07296-2, 2013/20181-0, and 2014/19245-6), CNPq (Grants Nos. 168255/2014-6, 444712/2014-3, 306006/2105-4, and 303329/2016-5), and CAPES/MES (Grants Nos. 1470/2010 and 157/2012), and the Petrobras company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Govea-Alcaide.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Acosta, L., Govea-Alcaide, E., Rosales-Saiz, F. et al. Influence of the spark-plasma texturing conditions on the intragranular features of Bi-2223 ceramic samples. J Mater Sci: Mater Electron 30, 6984–6992 (2019). https://doi.org/10.1007/s10854-019-01016-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01016-6

Navigation