Skip to main content
Log in

Controlled solvothermal synthesis and properties of Cu2SnS3 nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cu2SnS3 (CTS) nanocrystallites were successfully obtained through a facile solvothermal technique at 140 and 200 °C for 24 h. In this work, the effect of temperature on structural, morphological and optical characteristics was investigated. The X-ray diffraction patterns of the samples proved the polycrystalline nature and the formation of pure cubic Cu2SnS3 structure with (111) preferential orientation. No peak referring to other binary or ternary phases were detected in the patterns. We found that by increasing the temperature, the average crystallite sizes calculated using the Debye–Scherrer formula increased from 10 to 23 nm and the direct optical band gap increased from 1.30 to 1.44 eV. The Magnetic measurements at room temperature reveal paramagnetic behavior. In this study, Cu2SnS3 nanocrystals were prepared through an environmental-friendly facile solvothermal method. It was found that the crystal structure and morphology of the productions were strongly influenced by the reaction conditions including temperature. In our case, the temperature seems to affect the quality of the nanoparticles and may be the cause of the presence of such forms. At increasing more particles on the surface may agglomerate to form bigger grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Z.G. Li, A.L.K. Lui, K.H. Lam, L.F. Xi, Y.M. Lam, Inorg. Chem. 53, 10874–10880 (2014)

    Article  Google Scholar 

  2. J.C. Zhou, L. You, S.W. Li, Y.L. Yang, Mater. Lett. 81, 248–250 (2012)

    Article  Google Scholar 

  3. Z. Seboui, A. Gassoumi, N.K. Turki, Mater. Sci. Semicond. Process. 26, 360–366 (2014)

    Article  Google Scholar 

  4. A. Tombak, Y.S. Ocak, M.F. Genişel, T. Kilicoglu, Mater. Sci. Semicond. Process. 28, 98–102 (2014)

    Article  Google Scholar 

  5. K. Jimbo, R. Kimura, T. Kamimura, S. Yamada, W.S. Maw, H. Araki, K. Oishi, H. Katagiri, Thin Solid Films 515, 5997–5999 (2007)

    Article  Google Scholar 

  6. H. Katagiri, Thin Solid Films 480, 426–432 (2005)

    Article  Google Scholar 

  7. H. Katagiri, K. Saitoh, T. Washio, H. Shinohara, T. Kurumadani, S. Miyajima, Sol. Energy Mater. Sol. Cells 65, 141–148 (2001)

    Article  Google Scholar 

  8. M. Bouaziz, M. Amlouk, S. Belgacem, Thin Solid Films 517, 2527–2530 (2009)

    Article  Google Scholar 

  9. S.W. Shin, J.H. Han, Y.C. Park, G.L. Agawane, C.H. Jeong, J.H. Yun, A.V. Moholkar, J.Y. Lee, J.H. Kim, J. Mater. Chem. 22, 21727–21732 (2012)

    Article  Google Scholar 

  10. R.A. Wibowo, W.S. Kim, E.S. Lee, B. Munir, K.H. Kim, J. Phys. Chem. Solids 68, 1908–1913 (2007)

    Article  Google Scholar 

  11. L.J. Chen, Y.J. Chuang, J. Cryst. Growth 376, 11–16 (2013)

    Article  Google Scholar 

  12. K. Tanaka, Y. Fukui, N. Moritake, H. Uchiki, Sol. Energy Mater. Sol. Cells 95, 838–842 (2011)

    Article  Google Scholar 

  13. N. Kamoun, H. Bouzouita, B. Rezig, Thin Solid Films 515, 5949–5952 (2007)

    Article  Google Scholar 

  14. M. Bouaziz, J. Ouerfelli, M. Amlouk, S. Belgacem, Phys. Status Solidi A 204, 3354–3360 (2007)

    Article  Google Scholar 

  15. M. Adelifard, M.M.B. Mohagheghi, H. Eshghi, Phys. Scr. 85, 035603–035608 (2012)

    Article  Google Scholar 

  16. U. Chalapathi, Y. Jayasree, S. Uthanna, V. Sundara Raja, Phys. Status Solidi A 210, 2384–2390 (2013)

    Article  Google Scholar 

  17. C.P. Chan, H. Lam, C. Surya, Sol. Energy Mater. Sol. Cells 94, 207–211 (2010)

    Article  Google Scholar 

  18. Q.M. Chen, X.M. Dou, Z.Q. Li, S.Y. Cheng, S.L. Zhuang, Adv. Mater. Res. 335, 1406–1411 (2011)

    Google Scholar 

  19. Q. Guo, H.W. Hillhouse, R.J. Agrawal, Am. Chem. Soc. 131, 11672–11673 (2009)

    Article  Google Scholar 

  20. Y. Zhou, W. Zhou, Y. Du, M. Li, S. Wu, Mater. Lett. 65, 1535–1537 (2011)

    Article  Google Scholar 

  21. Y. Wang, H.J. Gong, Alloys Compd. 509, 9627–9630 (2011)

    Article  Google Scholar 

  22. K. Woo, Y. Kim, J. Moon, Energy Environ. Sci. 5, 5340–5345 (2012)

    Article  Google Scholar 

  23. S.A. Vanalakar, G.L. Agawane, S.W. Shin, H.S. Yang, P.S. Patil, J.Y. Kim, J.H. Kim, Acta Mater. 85, 314–321 (2015)

    Article  Google Scholar 

  24. S.A. Vanalakar, S.J. Yeo, P.S. Patil, J.Y. Kim, J.H. Kim, Z. Phys. Chem. 228, 917–926 (2014)

    Google Scholar 

  25. S.A. Vanalakar, R.C. Pawar, M.P. Suryawanshi, S.S. Mali, D.S. Dalavi, A.V. Moholkar, Mater. Lett. 65, 548–551 (2011)

    Article  Google Scholar 

  26. S. Rabaoui, H. Dahman, N. Ben Mansour, L. El Mir, J. Mater. Sci.: Mater. Electron. 26, 1119–1124 (2015)

    Google Scholar 

  27. X. Liang, Q. Cai, W. Xiang, Z. Chen, J. Zhong, Y. Wang, M. Shao, Z. Li, J. Mater. Sci. Technol. 29, 231–236 (2013)

    Article  Google Scholar 

  28. H. Saeki, H. Tabata, T. Kawai, Solid State Commun. 120, 439–443 (2001)

    Article  Google Scholar 

  29. G.K. Williamson, W.H. Hall, Acta Metall. 1, 22–31 (1953)

    Article  Google Scholar 

  30. P.A. Fernandes, P.M.P. Salome, A.F. da Cunha, J. Phys. D Appl. Phys. 43, 215403–215414 (2010)

    Article  Google Scholar 

  31. B. Li, Y. Xie, J.X. Huang, Y.T. Qian, J. Solid State Chem. 153, 170–173 (2000)

    Article  Google Scholar 

  32. B. Rezig, H. Dahman, M. Kenzari, Renew. Energy 2, 125–128 (1992)

    Article  Google Scholar 

  33. H. Dahman, M. Khalifa, B. Rezig, M. Brunel, Thin Solid Films 280, 56–60 (1996)

    Article  Google Scholar 

  34. G. Moh, Chemie der Erde 34, 1–61 (1975)

    Google Scholar 

  35. P.A. Fernandes, P.M.P. Salome, A.F. da Cunha, Phys. Status Solidi 7, 901–904 (2010)

    Google Scholar 

  36. H. Hahn, H. Schulze, Naturwiss 52, 426 (1965)

    Google Scholar 

  37. N. Wang, N. Jahrb, Mineral 241, 424–431 (1974)

    Google Scholar 

  38. M. Onoda, X.A. Chen, A. Sato, H. Wada, Mater. Res. Bull. 35, 1563–1570 (2000)

    Article  Google Scholar 

  39. X. Chen, X. Wang, C. An, J. Liu, Y. Qian, J. Cryst. Growth 256, 368–376 (2003)

    Article  Google Scholar 

  40. D. Avallaneda, M.T.S. Nair, P.K. Nair, J. Electrochem. Soc. 187, 346–352 (2010)

    Article  Google Scholar 

  41. S. Kahraman, S. Çetinkaya, S. Yaşar, İ. Bilican, Philos. Mag. 94, 3149–3161 (2014)

    Article  Google Scholar 

  42. S. Yaşar, S. Kahraman, S. Çetinkaya, I. Bilican, J. Alloys Compd. 618, 217–221 (2015)

    Article  Google Scholar 

  43. C.H.L. Weijtens, P.A.C. Vanloon, Thin Solid Films 196, 1–10 (1991)

    Article  Google Scholar 

  44. D. Tiwari, T.K. Chaudhuri, T. Shripathi, U. Deshpande, R. Rawat, Sol. Energy Mater. Sol. Cells 113, 165–170 (2013)

    Article  Google Scholar 

  45. B.H. Liu, J. Ding, Appl. Phys. Lett. 88, 042506–042508 (2006)

    Article  Google Scholar 

  46. B.H. Liu, J. Ding, Z.L. Dong, C.B. Boothroyd, J.H. Yin, J.B. Yi, Phys. Rev. B 74, 184427–184436 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rabaoui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabaoui, S., Dahman, H., Omri, K. et al. Controlled solvothermal synthesis and properties of Cu2SnS3 nanoparticles. J Mater Sci: Mater Electron 28, 3090–3097 (2017). https://doi.org/10.1007/s10854-016-5897-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5897-z

Keywords

Navigation