Skip to main content
Log in

Surface modification of aluminum and silicon carbide during the nitrogen-induced self-forming Al composite (NISFAC) manufacturing process

  • Innovation in Materials Processing
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

It is well known that poor wettability at the interface between the Al matrix and the reinforcing phase is a technical bottleneck in the development of aluminum matrix composites. A nitrogen-induced self-forming Al composite (NISFAC) process was developed, which is a novel concept of a composite manufacturing process that does not require vacuum or external pressure. This process employs an exothermic reaction accompanying the nitridation of Al, and the heat dissipated from the reaction enables the local melting and self-sintering of the Al powder. In this study, X-ray photoelectron spectroscopy (XPS) analysis was employed to investigate the compositional changes in monolithic SiC particles and the Al/SiC mixture during heating at 700 °C for 1 h in air, argon, and nitrogen atmospheres, respectively. In addition, XPS results were used to examine the mechanism for the surface modification of Al and SiC particles during the NISFAC process and to understand why self-sintering only occurs in a nitrogen atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Gholipour V, Shamanian M, Ashrafi A, Maleki A (2021) Development of aluminum-nanoclaycomposite by using powder metallurgy and hot extrusion process. Met Mater Int 27:3681. https://doi.org/10.1007/s12540-020-00791-w

    Article  CAS  Google Scholar 

  2. K Shah (2016) BCC Research, http://www.bccresearch.com/market-research/advanced-materials/metal-matrix-composites-market-report-avm012e.html. 28 July 2017

  3. Taherzadeh Mousavian R, Behnamfard S, Heidarzadeh A, Taherkhani K, Azari Khosroshahi R, Brabazon D (2021) Incorporation of SiC ceramic nanoparticles into the aluminum matrix by a novel method: production of a metal matrix composite. Met Mater Int 27:2968. https://doi.org/10.1007/s12540-019-00604-9

    Article  CAS  Google Scholar 

  4. Chawla N, Chawla K (2006) Metal-matrix composites in ground transportation. JOM 58:67. https://doi.org/10.1007/s11837-006-0231-5

    Article  CAS  Google Scholar 

  5. Jang H, Kim S-H, Lee N, Cha P-R, Ahn J-P, Choi H, Lee K-B (2022) Mechanism for self-formation of Al matrix composites using nitridation-induced manufacturing processes. J Mater Res Technol online published. https://doi.org/10.1016/j.jmrt.2022.03.130

    Article  Google Scholar 

  6. Kim D-Y, Cha P-R, Nam H-S, Choi H-J, Lee K-B (2020) Effect of material and process variables on characteristics of nitridation-induced self-formed aluminum matrix composites—part 1: effect of reinforcement volume fraction, size, and processing temperatures. Materials 13:1309. https://doi.org/10.3390/ma13061309

    Article  CAS  Google Scholar 

  7. Kim D-Y, Cha P-R, Nam H-S, Choi H-J, Lee K-B (2020) Effect of Material and process variables on characteristics of nitridation-induced self-formed aluminum matrix composites—part 2: effect of nitrogen flow rates and processing temperatures. Materials 13:1213. https://doi.org/10.3390/ma13051213

    Article  CAS  Google Scholar 

  8. KB Lee, JP Ahn, H Choi (2018) U.S. Patent 10094006, 9 October 2018

  9. Lee K-B, Kim S-H, Kim D-Y, Cha P-R, Kim H-S, Choi H-J, Ahn J-P (2019) Aluminum matrix composites manufactured using nitridation-induced self-forming process. Sci Rep 9:1. https://doi.org/10.1038/s41598-019-56802-3

    Article  CAS  Google Scholar 

  10. Sreemany M, Ghosh T, Pai B, Chakraborty M (1998) XPS studies on the oxidation behavior of SiC particles. Mater Res Bull 33:189. https://doi.org/10.1016/S0025-5408(97)00222-5

    Article  CAS  Google Scholar 

  11. Ávila A, Montero I, Galan L, Ripalda JM, Levy R (2001) Behavior of oxygen doped SiC thin films: an x-ray photoelectron spectroscopy study. J Appl Phys 89:212. https://doi.org/10.1063/1.1332796

    Article  Google Scholar 

  12. Lee WJ, Li C, Burke N, Patel J, Wilson M, Gerdes K (2014) Heat treatment of 6H-SiC under different gaseous environments. Ceram Int 40:4149. https://doi.org/10.1016/j.ceramint.2013.08.071

    Article  CAS  Google Scholar 

  13. Ramis G, Quintard P, Cauchetier M, Busca G, Lorenzelli V (1989) Surface chemistry and structure of ultrafine silicon carbide: an FT-IR study. J Am Ceram Soc 72:1692. https://doi.org/10.1111/j.1151-2916.1989.tb06304.x

    Article  CAS  Google Scholar 

  14. Taylor T (1989) The surface composition of silicon carbide powders and whiskers: an XPS study. J Mater Res 4:189. https://doi.org/10.1557/JMR.1989.0189

    Article  CAS  Google Scholar 

  15. Wang PS, Hsu S, Wittberg T (1991) Oxidation kinetics of silicon carbide whiskers studied by X-ray photoelectron spectroscopy. J Mater Sci 26:1655. https://doi.org/10.1007/BF00544678

    Article  CAS  Google Scholar 

  16. Miyoshi K, Buckley DH (1982) XPS, AES and friction studies of single-crystal silicon carbide. Appl Surf Sci 10:357. https://doi.org/10.1016/0378-5963(82)90167-2

    Article  CAS  Google Scholar 

  17. Rahaman MN, Boiteux Y, De Jonghe LC (1985) Surface characterization of silicon nitride and silicon carbide powders. Am Ceram Soc Bull 65:1171

    Google Scholar 

  18. Tamayo A, Rubio F, Mazo MA, Rubio J (2018) Further characterization of the surface properties of the SiC particles through complementarity of XPS and IGC-ID techniques. Boletín de la Sociedad Española de Cerámica y Vidrio 57:231. https://doi.org/10.1016/j.bsecv.2018.04.003

    Article  CAS  Google Scholar 

  19. Gomez E, Gomez-Acebo T, Echeberria J, Iturriza I, Castro F (1994) Nitridation of SiC for the production of SiC-Si3N4 nanocomposites. J Eur Ceram Soc 14:411. https://doi.org/10.1016/0955-2219(94)90079-5

    Article  CAS  Google Scholar 

  20. Oh S, Cornie J, Russell K (1989) Wetting of ceramic particulates with liquid aluminum alloys: part II. Study of wettability. Metall Trans A 20:533. https://doi.org/10.1007/BF02653933

    Article  Google Scholar 

  21. Cong XS, Shen P, Wang Y, Jiang Q (2014) Wetting of polycrystalline SiC by molten Al and Al-Si alloys. Appl Surf Sci 317:140. https://doi.org/10.1016/j.apsusc.2014.08.055

    Article  CAS  Google Scholar 

  22. Hauert R, Patscheider J, Tobler M, Zehringer R (1993) XPS investigation of the aC: H/Al interface. Surf Sci 292:121. https://doi.org/10.1016/0039-6028(93)90395-Z

    Article  CAS  Google Scholar 

  23. Gnecco F, Beccaria A (1999) Corrosion behaviour of Al-Si/SiC composite in sea water. Brit Corros J 34:57. https://doi.org/10.1179/bcj.1999.34.1.57

    Article  CAS  Google Scholar 

  24. Wang A-q, H-d Guo M, Li J-P, Ma D-q (2017) Optimization of SiCp surface and interface structure of SiCp/A390 composites. Adv Eng Res 100:646. https://doi.org/10.2991/icmeim-17.2017.110

    Article  Google Scholar 

  25. Ibrahim I, Mohamed F, Lavernia E (1991) Particulate reinforced metal matrix composites—a review. J Mater Sci 26:1137. https://doi.org/10.1007/BF00544448

    Article  CAS  Google Scholar 

  26. Kovacich J, Kasperkiewicz J, Lichtman D, Aita C (1984) Auger electron and x-ray photoelectron spectroscopy of sputter deposited aluminum nitride. J Appl Phys 55:2935. https://doi.org/10.1063/1.333335

    Article  CAS  Google Scholar 

  27. Cho Y, Kim Y, Weber E, Ruvimov S, Liliental-Weber Z (1999) Chemical and structural transformation of sapphire (Al2O3) surface by plasma source nitridation. J Appl Phys 85:7909. https://doi.org/10.1063/1.370606

    Article  CAS  Google Scholar 

  28. Soares GV, Bastos KP, Pezzi RP et al (2004) Nitrogen bonding, stability, and transport in AlON films on Si. Appl Phys Lett 84:4992. https://doi.org/10.1063/1.1763230

    Article  CAS  Google Scholar 

  29. Rosenberger L, Baird R, McCullen E, Auner G, Shreve G (2008) XPS analysis of aluminum nitride films deposited by plasma source molecular beam epitaxy. Surf Interface Anal 40:1254. https://doi.org/10.1002/sia.2874

    Article  CAS  Google Scholar 

  30. Sharma N, Ilango S, Dash S, Tyagi A (2017) X-ray photoelectron spectroscopy studies on AlN thin films grown by ion beam sputtering in reactive assistance of N+/N2+ ions: substrate temperature induced compositional variations. Thin Solid Films 636:626. https://doi.org/10.1016/j.tsf.2017.07.006

    Article  CAS  Google Scholar 

  31. Motamedi P, Cadien K (2014) XPS analysis of AlN thin films deposited by plasma enhanced atomic layer deposition. Appl Surf Sci 315:104. https://doi.org/10.1016/j.apsusc.2014.07.105

    Article  CAS  Google Scholar 

  32. Kim S-H, Noh J-H, Ahn J-P et al (2015) Effects of surface oxide on the nitridation behavior of aluminum particles. Metall Mater Trans A 46:496. https://doi.org/10.1007/s11661-014-2604-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (NRF-2017R1A2B4005564, NRF-2020R1I1A1A01057647, NRF-2021M3H4A1A04092462).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyunjoo Choi or Kon-Bae Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: M. Grant Norton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Nayak, K.C., Lee, N. et al. Surface modification of aluminum and silicon carbide during the nitrogen-induced self-forming Al composite (NISFAC) manufacturing process. J Mater Sci 57, 18025–18036 (2022). https://doi.org/10.1007/s10853-022-07240-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07240-6

Navigation