Skip to main content
Log in

Diffuse scattering and the mechanism for the phase transition in triglycine sulphate

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Despite the order/disorder nature of its ferroelectric phase transition, and evidence for the evolution of local order as being important for understanding the transition, no comprehensive diffuse scattering study of the short-range order in triglycine sulphate, (TGS), (NH2CH2COOH)3H2SO4 has been undertaken. Diffuse scattering from single crystals is sensitive to two-body correlations, and can act as a probe of local structure, which in a second order phase transition acts as a precursor to the low temperature phase. The role of hydrogen bonding and dipolar interactions in the ferroelectric phase transition in TGS has been a long matter of conjecture. Using neutron and X-ray single crystal diffuse scattering this study shows that hydrogen bond mediated interactions between polarising glycine molecules cause local one-dimensional polarised domains to develop, oriented parallel to the b axis. These domains interact via dipolar interactions, and the three-dimensional ferroelectric order arises. This provides a real-space, interaction-based model for the phase transition in TGS, showing in detail how the local chemistry and physics give rise to the polarised state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Barabash RI, Ice GE, Turchi PEA (eds) (2009) Diffuse scattering and the fundamental properties of materials, 1st edn. Momentum Press, Highland Park

    Google Scholar 

  2. Chan EJ, Welberry TR, Goossens DJ, Heerdegen AP (2010) J Appl Crystallogr 43:913

    Article  CAS  Google Scholar 

  3. Choudhury RR, Chitra R (2008) Pramana J Phys 71:911

    Article  CAS  Google Scholar 

  4. Choudhury RR, Chitra R (2009) J Phys Condens Mat 21:335901

    Article  Google Scholar 

  5. Choudhury RR, Chitra R, Ramanadham M (2003) J Phys Condens Mat 15:4641

    Article  CAS  Google Scholar 

  6. Choudhury RR, Chitra R, Sastry PU, Das A, Ramanadham M (2004) Pramana J Phys 63:107

    Article  CAS  Google Scholar 

  7. Estermann MA, Steurer W (1998) Phase Transit 67:165

    Article  CAS  Google Scholar 

  8. Fletcher SR, Keve ET, Skapski AC (1976) Feroelectrics 14:775

    Article  CAS  Google Scholar 

  9. Fletcher SR, Keve ET, Skapski AC (1976) Feroelectrics 14:789

    Article  CAS  Google Scholar 

  10. Fujii Y, Yamada Y (1971) J Phys Soc Jpn 30:1676

    Article  CAS  Google Scholar 

  11. Gonzalo JA (1966) Phys Rev 144:662

    Article  CAS  Google Scholar 

  12. Goossens DJ, Gutmann MJ (2009) Phys Rev Lett 102:015,505

    Article  CAS  Google Scholar 

  13. Goossens DJ, Heerdegen AP, Chan EJ, Welberry TR (2011) Metall Mater Trans A 42:23

    Article  CAS  Google Scholar 

  14. Hoshino S, Okaya Y, Pepinsky R (1959) Phys Rev 115:323

    Article  CAS  Google Scholar 

  15. Hudspeth JM, Goossens DJ (2012) J Cryst Growth 338:177

    Article  CAS  Google Scholar 

  16. Hudspeth JM, Goossens DJ, Gutmann MJ, Studer AJ (2013) Cryst Res Technol 48(3):169

    Article  CAS  Google Scholar 

  17. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, New York

    Google Scholar 

  18. Kay MI (1977) Ferroelectrics 17:415

    Article  CAS  Google Scholar 

  19. Kay MI, Kleinberg R (1973) Ferroelectrics 5:45

    Article  CAS  Google Scholar 

  20. Keen DA, Gutmann MJ, Wilson CC (2006) J Appl Cryst 39:714

    Article  CAS  Google Scholar 

  21. Kikuta T, Hamatake D, Tamazaki T, Nakatani N (2007) Ferroelectrics 347:65

    Article  CAS  Google Scholar 

  22. Kikuta T, Tamazaki T, Nakatani N (2010) Ferroelectrics 403:111

    Article  CAS  Google Scholar 

  23. Lines ME, Glass AM (2001) Principles and applications of ferroelectrics and related materials. Oxford University Press, New York

    Book  Google Scholar 

  24. Neder RB, Proffen T (2008) Diffuse scattering and defect structure simulations. Oxford University Press, New York

    Book  Google Scholar 

  25. Pura B, Przedmojski J (1973) Phys Lett A 43:217

    Article  CAS  Google Scholar 

  26. Scheidegger S, Estermann MA, Steurer W (2000) J Appl Cryst 33:35

    Article  CAS  Google Scholar 

  27. Schneider CA, Rasband WS, Eliceiri KW (2012) Nat Methods (Oxford, UK) 9:671

    Article  CAS  Google Scholar 

  28. Schweika W (1998) Disordered alloys, diffuse scattering and Monte Carlo simulations. Springer, Berlin

    Google Scholar 

  29. Shibuya I, Mitsui T (1961) J Phys Soc Jpn 16:479

    Article  CAS  Google Scholar 

  30. Tripadus V, Aranghel D, Statescu M, Buchsteiner A (2008) Chem Phys 353:59

    Article  CAS  Google Scholar 

  31. Weber T, Estermann MA, Bürgi HB (2001) Acta Cryst B 57:579

    Article  CAS  Google Scholar 

  32. Welberry TR (2004) Diffuse X-ray Scattering and Models of Disorder. Oxford University Press, Oxford

    Google Scholar 

  33. Welberry TR, Goossens DJ, David WIF, Gutmann MJ, Bull MJ, Heerdegen AP (2003) J Appl Cryst 36:1440

    Article  CAS  Google Scholar 

  34. Welberry TR, Goossens DJ, Heerdegen AP, Lee PL (2005) Z Krist 220:1052

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Australian Institute for Nuclear Science and Engineering, the NCI National Facility and the Australian Research Council. Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Goossens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hudspeth, J.M., Goossens, D.J., Welberry, T.R. et al. Diffuse scattering and the mechanism for the phase transition in triglycine sulphate. J Mater Sci 48, 6605–6612 (2013). https://doi.org/10.1007/s10853-013-7457-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7457-8

Keywords

Navigation