Skip to main content
Log in

A Linear Elastic Force Optimization Model for Shape Matching

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We employ an elasticity based model to account for shape changes. In general, to solve the underlying equations for the deformation, boundary conditions have to be incorporated, e.g., in the form of correspondences between contour points. However, exact boundary correspondences are usually unknown. We propose a method that is able to optimize pre-selected boundary conditions such that external forces causing the shape change are minimized in some sense. Thus we seek simple physical explanations of shape change close to a pre-selected deformation. Our method decomposes the full nonlinear optimization problem into a sequence of convex optimizations. Artificial and natural examples of shape change are given to demonstrate the plausibility of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Agudo, A., Calvo, B., Montiel, J.M.M.: Finite element based sequential Bayesian non-rigid structure from motion. Computer Vision and Pattern Recognition, pp. 1522–1529 (2013)

  2. Amit, Y.: A nonlinear variational problem for image matching. SIAM J. Sci. Comput. 15(1), 207–224 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Amit, Y.: A non-linear variational problem for image matching. SIAM J. Sci. Comput. 15(1), 1–30 (1994)

    Article  MathSciNet  Google Scholar 

  4. Antman, S.S.: Nonlinear Problems of Elasticity. Springer, Applied Mathematical Sciences, Vol. 107 (1995)

  5. Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vision 61(2), 139–157 (2005)

    Article  Google Scholar 

  6. Braess, D.: Finite Elements. Theory, Fast Solvers, and Applications in Solid Mechanics. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  7. Blank, M., Gorelick, L., Shechtman, E., Irani, M., Basri, R.: Actions as Space-Time Shape. International Conference on Computer Vision, pp. 1395–1402 (2005)

  8. Bro-Nielsen, M.: Finite Elements Modeling in Surgery Simulation. Proc. IEEE 86(3), 490–503 (1998)

  9. Bronstein, A.M., Bronstein, M.M., Bruckstein, A.M., Kimmel, R.: Analysis of two-dimensional non-rigid shapes. Int. J. Comput. Vision 78(1), 67–88 (2008)

    Article  Google Scholar 

  10. Ciarlet, P.G.: Mathematical Elasticity. Volume I: Three-Dimensional Theory, Series “Studies in Mathematics and its Applications”, North-Holland, Amsterdam (1988)

  11. Christensen, G.E., Rabbitt, R.D., Miller, M.I.: Deformable templates using large deformation kinematics. IEEE Trans. Image Process. 5(10), 1435–1447 (1996)

    Article  Google Scholar 

  12. Clarenz Wang, U., Droske, M., Henn, S., Rumpf, M., Witsch, K.: Computational methods for nonlinear image registration. Mathematical Models for Registration and Applications to Medical Imaging, Mathematics in Industry, Vol. 10 (2006)

  13. Cremers, D.: Dynamical statistical shape priors for level set based tracking. Transactions on Pattern Analysis and Machine Intelligence, Vol. 28 (2008)

  14. Davatzikos, C., Prince, J.L.: Brain Image Registration Based on Curve Mapping, pp. 245–254. IEEE Workshop Biomedical Image, Analysis (1994)

  15. Dupuis, P., Grenander, U., Miller, M.I.: Variational Problems on Flows of Diffeomorphisms for Image Matching, pp. 587–600. Quarterly of Applied Mathematics, LVI (1998)

  16. Evans, L.C.: Partial Differential Equations Graduate Studies in Mathematics, Vol. 19, AMS (2010)

  17. Ferrant, M., Warfield, S.K., Guttmann, C.R.G., Mulkern, R.V., Jolesz, F.A., Kikinis, R.: 3D Image Matching Using a Finite Element Based Elastic Deformation Model. Proceedings of MICCAI 1999, LNCS 1679, pp. 202–209 (1999)

  18. Ferrant, M., Warfield, S.K., Nabavi, A., Jolesz, F.A., Kikinis, R.: Registration of 3D Intraoperative MR Images of the Brain Using a Finite Element Biomechanical Model. Proceedings of MICCAI 2000, LNCS 1935, pp. 19–28 (2000)

  19. Fuchs, M., Jüttler, B., Scherzer, O., Yang, H.: Shape metrics based on elastic deformations. J. Math. Imag Vision 35, 86–102 (2009)

    Article  Google Scholar 

  20. Grenander, U., Miller, M.: Pattern Theory: From Representation to Inference. Oxford University Press, Oxford (2007)

    Google Scholar 

  21. Holden, M.: A review of geometric transformations for nonrigid body registration. IEEE Trans. Med. Imag. 27(1), 111–128 (2008)

    Article  Google Scholar 

  22. Ilic, S., Fua, P.: Non-linear beam model for tracking large deformations. International Conference on Computer Vision, pp. 1–8 (2007)

  23. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vision 1(4), 321–331 (1988)

    Article  Google Scholar 

  24. Le Tallec, P.: Numerical methods for nonlinear three-dimensional elasticity. Handbook Numer. Anal. III, 465–622 (1994)

    Article  Google Scholar 

  25. Lin, T., Dinov, I., Toga, A., Vese, L.: Nonlinear Elastic Registration and Sobolev Gradients. Biomedical Image Registration, LNCS 6204, pp. 269–280 (2010)

  26. Löfberg, J.: YALMIP: A toolbox for modeling and optimization in MATLAB. Proceedings of the CACSD Conference (2004). http://users.isy.liu.se/johanl/yalmip

  27. Malti, A., Hartley, R., Bartoli, A., Kim, Jae-Hak: Non-Linear Beam Model for Tracking Large Deformations. Computer Vision and Pattern Recognition, pp. 1522–1529 (2013)

  28. Mio, W., Srivastava, A., Joshi, S.: On shape of plane elastic curves. Int. J. Comput. Vision 73(3), 307–324 (2007)

    Article  Google Scholar 

  29. Peckar, W., Schnörr, C., Rohr, K., Stiehl, H.S.: Parameter-free elastic deformation approach for 2D and 3D registration using prescribed displacements. J. Math. Imag. Vision 10(2), 143–162 (1999)

    Article  MATH  Google Scholar 

  30. Quarteroni, A., Sacco, R., Saleri, F.: Numerical mathematics, 2nd edn. Texts in Applied Mathematics no. 37, Springer, New York (2007)

  31. Rabbit, R.D., Weiss, J.A., Christensen, G.E., Miller, M.I., The Applied Mechanics Group (Lawrence Livermore National Laboratories, Livermore CA).: Mapping of Hyperelastic Deformable Templates Using the Finite Element Method. Proc. SPIE 2573, 252–265 (1995)

  32. Sadd, M.H.: Elasticity. Applications, and Numerics, Elsevier Butterworth-Heinemann, Theory (2005)

  33. Salzmann, M., Uratsun, R.: Physically-based motion models for 3D tracking: a convex formulation. International Conference on Computer Vision, pp. 2064–2071 (2011)

  34. Sebastian, T.B., Klein, P.N., Kimia, B.B.: Recognition of Shapes by Editing Shock Graphs International Conference on Computer Vision, pp. 755–762 (2001)

  35. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones, Version 1.05 available from http://fewcal.kub.nl/sturm, Optimization Methods and Software, 11–12, pp. 625–653 (1999)

  36. Wang, Y., Staib, L.H.: Elastic model based non-rigid registration incorporating statistical shape information. In Proceedings of MICCAI 1998, pp. 1162–1173 (1998)

  37. Younes, L.: Computable elastic distances between shapes. SIAM J. Appl. Math. 58(2), 565–586 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  38. Younes, L.: Optimal matching between shapes via elastic deformations. Image Vis. Comput. 17, 381–389 (1999)

    Article  Google Scholar 

  39. Younes, L.: Spaces and manifolds of shapes in computer vision: an overview. Image Vis. Comput. 30, 389–397 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the U.S.-Israel Binational Science Foundation, Grant No. 2010331, by the Israel Science Foundation, Grant No. 764/10, by the Israel Ministry of Science, by the National Science Foundation, Grant No. 0915977, and by the Citigroup Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konrad Simon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simon, K., Sheorey, S., Jacobs, D. et al. A Linear Elastic Force Optimization Model for Shape Matching. J Math Imaging Vis 51, 260–278 (2015). https://doi.org/10.1007/s10851-014-0520-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-014-0520-5

Keywords

Navigation