Skip to main content
Log in

Conditional Toggle Mappings: Principles and Applications

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We study a class of mathematical morphology filters to operate conditionally according to a set of pixels marked by a binary mask. The main contribution of this paper is to provide a general framework for several applications including edge enhancement and image denoising, when it is affected by salt-and-pepper noise. We achieve this goal by revisiting shock filters based on erosions and dilations and extending their definition to take into account the prior definition of a mask of pixels that should not be altered. New definitions for conditional erosions and dilations leading to the concept of conditional toggle mapping. We also investigate algebraic properties as well as the convergence of the associate shock filter. Experiments show how the selection of appropriate methods to generate the masks lead to either edge enhancement or salt-and-pepper denoising. A quantitative evaluation of the results demonstrates the effectiveness of the proposed methods. Additionally, we analyse the application of conditional toggle mapping in remote sensing as pre-filtering for hierarchical segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 1
Algorithm 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. An operator ϕ:𝔼→𝔽 is idempotent if ∀x∈𝔼,ϕ 2(x)=ϕ(ϕ(x))=ϕ(x).

  2. An operator ϕ:𝔼→𝔽 is extensive (resp. anti-extensive) if ∀x∈𝔼,ϕ(x)≥x (resp. ≤).

  3. Flat zones of I are the connected component where the intensity does not change.

References

  1. Alvarez, L., Mazorra, L.: Signal and image restoration using shock filters and anisotropic diffusion. SIAM J. Numer. Anal. 31, 590–605 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baudes, A., Coll, B., Morel, J.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005)

    Article  MathSciNet  Google Scholar 

  3. Boncelet, C.: Image noise models. In: Bovik, A.C. (ed.) Handbook of Image and Video Processing, pp. 325–335. Academic Press, New York (2000)

    Google Scholar 

  4. Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4, 490–530 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chan, R., Chung-Wa, H., Nikolova, M.: Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization. IEEE Trans. Image Process. 14(10), 1479–1485 (2005)

    Article  Google Scholar 

  6. Chatterjee, P., Milanfar, P.: Is denoising dead? IEEE Trans. Image Process. 19(4), 895–911 (2010)

    Article  MathSciNet  Google Scholar 

  7. Diop, E., Angulo, J.: Spatially adaptive PDEs for robust image sharpening. In: Proc. Int. Conf. Image Processing (ICIP), pp. 949–952 (2012)

    Google Scholar 

  8. Elder, J., Zucker, S.: Local scale control for edge detection and blur estimation. IEEE Trans. Pattern Anal. Mach. Intell. 20(7), 699–716 (1998)

    Article  Google Scholar 

  9. Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.: A Compendium of Continuous Lattices. Springer, Berlin (1980)

    Book  MATH  Google Scholar 

  10. Gilboa, G., Sochen, N., Zeevi, Y.: Image enhancement and denoising by complex diffusion processes. IEEE Trans. Pattern Anal. Mach. Intell. 25(8), 1020–1034 (2004)

    Article  Google Scholar 

  11. Gilboa, G., Sochen, N.A., Zeevi, Y.Y.: Regularized shock filters and complex diffusion. In: Proceeding of the 7th European Conference on Computer Vision. Part I, ECCV’02, pp. 399–413. Springer, Berlin (2002)

    Google Scholar 

  12. Gonzalez, R., Woods, R.: Digital Image Processing. Prentice Hall, New York (2008)

    Google Scholar 

  13. Gower, J., Ross, G.: Minimum spanning trees and single linkage cluster analysis. Appl. Stat. 18(1), 54–64 (1969)

    Article  MathSciNet  Google Scholar 

  14. Grazzini, J., Soille, P.: Edge-preserving smoothing using a similarity measure in adaptive geodesic neighborhoods. Pattern Recognit. 42, 2306–2316 (2009)

    Article  MATH  Google Scholar 

  15. Heijmans, H.J.A.M.: Morphological Image Operators vol. 10. Academic Press, New York (1994)

    MATH  Google Scholar 

  16. Heijmans, H.J.A.M.: Composing morphological filters. IEEE Trans. Image Process. 6(5), 713–724 (1997). doi:10.1109/83.568928

    Article  Google Scholar 

  17. Heijmans, H.J.A.M., Nacken, P., Toet, A., Vincent, L.: Graph morphology. J. Vis. Commun. Image Represent. 3, 24–38 (1992)

    Article  Google Scholar 

  18. Heijmans, H.J.A.M., Ronse, C.: The algebraic basis of mathematical morphology. I. Dilations and erosions. Comput. Vis. Graph. Image Process. 50, 245–295 (1990)

    Article  MATH  Google Scholar 

  19. Hwang, H., Haddad, R.A.: Adaptive median filters: new algorithms and results. IEEE Trans. Image Process. 4, 499–502 (1995)

    Article  Google Scholar 

  20. Jochems, T.: Morphologie mathématique appliquée au contrôle industriel de pièces coulées. Ph.D. thesis, Ecole National Supérieure des Mines de Paris (1997)

  21. Keshet, R., Heijmans, H.J.A.M.: Adjunctions in pyramids, curve evolution and scale-spaces. Int. J. Comput. Vis. 52, 139–151 (2003)

    Article  Google Scholar 

  22. Kramer, H.P., Bruckner, J.B.: Iterations of a non-linear transformation for enhancement of digital images. Pattern Recognit. 7(1–2), 53–58 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lukac, R., Smolka, B., Martin, K., Plataniotis, K., Venetsanopoulos, A.: Vector filtering for color imaging. IEEE Signal Process. Mag. 22(1), 74–86 (2005)

    Article  Google Scholar 

  24. Mallat, S.: A Wavelet Tour of Signal Processing. The Sparse Way, 3rd edn. Academic Press, New York (2008)

    Google Scholar 

  25. Maragos, P.: Lattice image processing: a unification of morphological and fuzzy algebraic systems. J. Math. Imaging Vis. 22, 333–353 (2005)

    Article  MathSciNet  Google Scholar 

  26. Meyer, F.: The levelings. In: Proc. of the ISMM’98, pp. 199–206. Kluwer Academic, Norwell (1998)

    Google Scholar 

  27. Meyer, F., Serra, J.: Contrasts and activity lattice. Signal Process. 16(4), 303–317 (1989). doi:10.1016/0165-1684(89)90028-5

    Article  MathSciNet  Google Scholar 

  28. Motta, G., Ordentlich, E., Ramírez, I., Seroussi, G., Weinberger, M.J.: The iDUDE framework for grayscale image denoising. IEEE Trans. Image Process. 20(1), 1–21 (2011)

    Article  MathSciNet  Google Scholar 

  29. Osher, S., Rudin, L.: Feature-oriented image enhancement using shock filters. SIAM J. Numer. Anal. 27, 919–940 (1990)

    Article  MATH  Google Scholar 

  30. Osher, S., Rudin, L.: Shocks and other nonlinear filtering applied to image processing. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 1567, pp. 414–431 (1991)

    Google Scholar 

  31. Rivest, J.F., Soille, P., Beucher, S.: Morphological gradients. J. Electron. Imaging 2(4), 326–336 (1993). doi:10.1117/12.159642

    Article  Google Scholar 

  32. Roerdink, J.B.T.M.: Adaptivity and group invariance in mathematical morphology. In: International Conference of Image Processing, pp. 2253–2256. IEEE Press, New York (2009). doi:10.1109/ICIP.2009.5413983

    Google Scholar 

  33. Roerdink, J.B.T.M.: Personal communication (2012)

  34. Schavemaker, J., Reinders, M.J.T., Gerbrands, J.J., Backer, E.: Image sharpening by morphological filtering. Pattern Recognit. 33(6), 997–1012 (2000)

    Article  Google Scholar 

  35. Serra, J.: Image Analysis and Mathematical Morphology. Volume 2: Theoretical Advances. Academic Press, New York (1988)

    Google Scholar 

  36. Serra, J.: Toggle mappings. In: Simon, J.C. (ed.) From Pixels to Features, pp. 61–72. North Holland, Amsterdam (1989)

    Google Scholar 

  37. Serra, J., Vincent, L.: An overview of morphological filtering. Circuits Syst. Signal Process. 11(1), 47–108 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  38. Soille, P.: Beyond self-duality in morphological image analysis. Image Vis. Comput. 23(2), 249–257 (2005)

    Article  Google Scholar 

  39. Soille, P.: Constrained connectivity for hierarchical image partitioning and simplification. IEEE Trans. Pattern Anal. Mach. Intell. 30(7), 1132–1145 (2008)

    Article  Google Scholar 

  40. Soille, P.: Constrained connectivity for the processing of very-high-resolution satellite images. Int. J. Remote Sens. 31(22), 5879–5893 (2010)

    Article  Google Scholar 

  41. Soille, P.: Preventing chaining through transitions while favouring it within homogeneous regions. In: Mathematical Morphology and Its Applications to Image and Signal Processing. Lecture Notes in Computer Science, vol. 6671, pp. 96–107. Springer, Berlin (2011)

    Chapter  Google Scholar 

  42. Soille, P., Grazzini, J.: Constrained Connectivity and Transition Regions. In: Proc. of the ISMM’09, pp. 59–69. Springer, Berlin (2009)

    Google Scholar 

  43. Srinivasan, K., Ebenezer, D.: A new fast and efficient decision-based algorithm for removal of high density impulse noises. IEEE Signal Process. Lett. 14(3), 189–192 (2007)

    Article  Google Scholar 

  44. Taguchi, A., Matsumoto, T.: Removal of impulse noise from highly corrupted images by using noise position information and directional information of image. In: Proc. SPIE, Nonlinear Image Processing and Pattern Analysis XII, vol. 4304, pp. 188–196 (2001)

    Chapter  Google Scholar 

  45. Takeda, H., Farsiu, S., Milanfar, P.: Robust kernel regression for restoration and reconstruction of images from sparse, noisy data. In: Proc. Int. Conf. Image Processing (ICIP), pp. 1257–1260 (2006)

    Google Scholar 

  46. Takeda, H., Farsiu, S., Milanfar, P.: Kernel regression for image processing and reconstruction. IEEE Trans. Image Process. 16(2), 349–366 (2007)

    Article  MathSciNet  Google Scholar 

  47. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Sixth International Conference on Computer Vision, pp. 839–846 (1998)

    Google Scholar 

  48. Velasco-Forero, S., Angulo, J.: Supervised ordering in ℝp: application to morphological processing of hyperspectral images. IEEE Trans. Image Process. 20(11), 3301–3308 (2011)

    Article  MathSciNet  Google Scholar 

  49. Velasco-Forero, S., Angulo, J.: Random projection depth for multivariate mathematical morphology. IEEE J. Sel. Top. Signal Process. 6(7), 753–763 (2012)

    Article  Google Scholar 

  50. van Vliet, L., Young, I., Beckers, G.: A nonlinear Laplace operator as edge detector in noisy images. Comput. Vis. Graph. Image Process. 45(2), 167–195 (1989). doi:10.1016/0734-189X(89)90131-X

    Article  Google Scholar 

  51. Wang, Z., Zhang, D.: Progressive switching median filter for the removal of impulse noise from highly corrupted images. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 46(1), 78–80 (1999)

    Article  Google Scholar 

  52. Weickert, J.: Coherence-enhancing shock filters. In: Lecture Notes in Computer Science, pp. 1–8. Springer, Berlin (2003)

    Google Scholar 

  53. Welk, M., Weickert, J., Galć, I.: Theoretical foundations for spatially discrete 1-d shock filtering. Image Vis. Comput. 25, 455–463 (2007)

    Article  Google Scholar 

  54. Xu, H., Zhu, G., Peng, H., Wang, D.: Adaptive fuzzy switching filter for images corrupted by impulse noise. Pattern Recognit. Lett. 25(15), 1657–1663 (2004)

    Article  Google Scholar 

  55. Zhang, S., Karim, M.: A new impulse detector for switching median filters. IEEE Signal Process. Lett. 9(11), 360–363 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Velasco-Forero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velasco-Forero, S., Angulo, J. & Soille, P. Conditional Toggle Mappings: Principles and Applications. J Math Imaging Vis 48, 544–565 (2014). https://doi.org/10.1007/s10851-013-0429-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-013-0429-4

Keywords

Navigation