Skip to main content
Log in

Recognizing control chart patterns with neural network and numerical fitting

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Control chart has been widely used to determine whether the state of machining process is stable or not, and pattern recognition technology is often used to automatically judge the changing modes of control chart. It is because that the abnormal patterns of a control chart can reveal the potential problem of machining quality. In order to improve the recognition rate and efficiency of control chart patterns, a neural network-numerical fitting (NN-NF) model is proposed to recognize different control chart patterns. A back propagation (BP) network is first used to recognize control chart patterns preliminarily. And then, numerical fitting method is adopted to estimate the parameters and specific types of the patterns, which is different from the traditional neural network-based control chart pattern recognition methods. Based on this, Monte Carlo simulation is used to generate training and testing data samples. The results of simulated experiment show that training time of this NN-NF model can be reduced. At the same time, the recognition rate can also be improved. At last, a real example is also provided to illustrate the NN-NF model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Assaf Y. (2005) Multi-resolution wavelets analysis approach for the recognition of concurrent control chart patterns. Quality Engineering 17(1): 11–21. doi:10.1081/QEN-200028664

    Article  Google Scholar 

  • Assaleh K., Al-Assaf Y. (2005) Features extraction and analysis for classifying causable patterns in control charts. Computers & Industrial Engineering 49(1): 168–181. doi:10.1016/j.cie.2005.01.021

    Google Scholar 

  • Chakraborty S., Tah D. (2006) Real time statistical process advisor for effective quality control. Decision Support Systems 42(2): 700–711

    Article  Google Scholar 

  • Davis R.B., Woodall W.H. (1988) Performance of the control chart trend rule under linear shift. Journal of Quality Technology 20(4): 260–262

    Google Scholar 

  • Gauri S.K., Chakaborty S. (2006) Feature-based recognition of control chart patterns. Computers & Industrial Engineering 51(4): 726–742. doi:10.1016/j.cie.2006.07.013

    Article  Google Scholar 

  • Grant E.L., Leavenworth R.S. (1996) Statistical quality control (7th ed). McGraw-Hill, New York

    Google Scholar 

  • Guh R.-S. (2005) A hybrid learning-based model for on-line detection and analysis of control chart patterns. Computers & Industrial Engineering 49(1): 35–62. doi:10.1016/j.cie.2005.03.002

    Article  Google Scholar 

  • Guh R.-S., Shiue Y.-R. (2005) On-line identification of control chart patterns using self-organizing approaches. International Journal of Production Research 43(6): 1225–1254. doi:10.1080/0020754042000268884

    Article  Google Scholar 

  • Guh R.-S., Tannock J.D.T. (1999) A neural network approach to characterize pattern parameters in process control charts. Journal of Intelligent Manufacturing 10(5): 449–462. doi:10.1023/A:1008975131304

    Article  Google Scholar 

  • Guh R.-S., Tannock J.D.T. (1999) Recognition of control chart concurrent patterns using a neural network approach. International Journal of Production Research 37(8): 1743–1765. doi:10.1080/002075499190987

    Article  Google Scholar 

  • Hassan A., Baksh M.S.N., Shaharoun A.M., Jamaluddin H. (2003) Improved SPC chart pattern recognition using statistical features. International Journal of Production Research 41(7): 1587–1603. doi:10.1080/0020754021000049844

    Article  Google Scholar 

  • Hwarng H.B., Chong C.W. (1995) Detecting process non-randomness through a fast and cumulative learning ART-based pattern recognizer. International Journal of Production Research 33(7): 1817–1833. doi:10.1080/00207549508904783

    Article  Google Scholar 

  • Hwarng H.B., Hubele N.F. (1993) X-bar control chart pattern identification through efficient off-line neural network training. IIE Transitions 25(3): 27–40. doi:10.1080/07408179308964288

    Article  Google Scholar 

  • Lucy-Bouler T.L. (1993) Problems in control chart pattern recognition systems. International Journal of Quality & Reliability Management 10(8): 5–13. doi:10.1108/02656719310047900

    Article  Google Scholar 

  • Montgomery D.C. (1985) Introduction to statistical quality control. Wiley, New York

    Google Scholar 

  • Nelson L.S. (1984) The Shewhart control chart-tests for special causes. Journal of Quality Technology 16(4): 237–239

    Google Scholar 

  • Olsson D.M., Nelson L.S. (1975) The Nelder–Mead simplex procedure for function minimization. Technometrics 17(1): 45–51. doi:10.2307/1267998

    Article  Google Scholar 

  • Perry M.B., Spoerre J.K., Velasco T. (2001) Control chart pattern recognition using back propagation artificial neural networks. International Journal of Production Research 39(15): 3399–3418. doi:10.1080/00207540110061616

    Article  Google Scholar 

  • Pham D.T., Chan A.B. (1998) Control chart pattern recognition using a new type of self-organizing neural network. Proceedings of Institution of Mechanical Engineering. Part I: Journal of Systems and Control Engineering 212(2): 115–127. doi:10.1243/0959651981539343

    Article  Google Scholar 

  • Pham D.T., Oztemel E. (1992) XPC: An on-line expert system for statistical process control. International Journal of Production Research 30(12): 2857–2872. doi:10.1080/00207549208948195

    Article  Google Scholar 

  • Pham D.T., Oztemel E. (1992) Control chart pattern recognition using neural networks. Journal of Systems Engineering 2(4): 256–262

    Google Scholar 

  • Pham D.T., Oztemal E. (1994) Control chart pattern recognition using learning vector quantization networks. International Journal of Production Research 32(3): 721–729. doi:10.1080/00207549408956963

    Article  Google Scholar 

  • Pham D.T., Wani M.A. (1997) Feature-based control pattern recognition. International Journal of Production Research 35(7): 1875–1890. doi:10.1080/002075497194967

    Article  Google Scholar 

  • Pugh G.A. (1991) A comparison of neural network to SPC charts. Computers & Industrial Engineering 21(1–4): 253–255. doi:10.1016/0360-8352(91)90097-P

    Article  Google Scholar 

  • Serre D. (2002) Matrices: Theory and applications. Springer, New York

    Google Scholar 

  • Swift J.A., Mize J.H. (1995) Out-of-control pattern recognition and analysis for quality control charts using lisp-based systems. Computers & Industrial Engineering 28(1): 81–91. doi:10.1016/0360-8352(94)00028-L

    Article  Google Scholar 

  • Western Electric. (1956). Statistical quality control handbook. Indianapolis: Western Electric Corporation

  • Yang M.-S., Yang J.-H. (2002) A fuzzy-soft learning vector quantization for control chart pattern recognition. International Journal of Production Research 40(12): 2721–2731. doi:10.1080/00207540210137639

    Article  Google Scholar 

  • Zorriassatine F., Tannock J.D.T. (1998) A review of neural networks for statistical process control. Journal of Intelligent Manufacturing 9(3): 209–224. doi:10.1023/A:1008818817588

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingyu Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, P., Liu, D. & Zeng, Z. Recognizing control chart patterns with neural network and numerical fitting. J Intell Manuf 20, 625–635 (2009). https://doi.org/10.1007/s10845-008-0152-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-008-0152-y

Keywords

Navigation