Skip to main content
Log in

Encoding the fine-structured mechanism of action potential dynamics with qualitative motifs

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

This work presents a neuroinformatic method for deriving mechanistic descriptions of fine-structured neural activity. This is a new development in the computer-assisted analysis of dynamics in conductance-based models, which is illustrated using single compartment models of an action potential. A sequence of abstract, qualitative motifs is inferred from this analysis, forming a template that is independent of the specific equations from which they were abstracted. The template encodes the assumptions behind the model reduction steps used to derive the motifs, and so specifies quantitative information about their domains of validity. The template representation of a mechanism is converted to a hybrid dynamical system, which is simulated as a sequence of low-dimensional reduced models (in this example, phase plane models) with appropriate switching conditions taken from the motifs. We demonstrate the validity of the template on a detailed single neuron model of spiking taken from the literature, and show that the corresponding hybrid system simulation closely mimics the spiking dynamics of the full model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Achard, P., & De Schutter, E. (2006). Complex parameter landscape for a complex neuron model. PLoS Computational Biology, 2(7), e94. doi:10.1371/journal.pcbi.0020094.

    Article  Google Scholar 

  • Borisyuk, A., & Rinzel, J. (2005). Understanding neuronal dynamics by geometrical dissection of minimal models. In: C. Chow, B. Gutkin, D. Hansel, C. Meunier, & J. Dalibard (Eds.), Models and methods in neurophysics (pp. 19–72). Elsevier.

  • Bradley, E., Easley, M., & Stolle, R. (2001). Reasoning about nonlinear system identification. Artificial Intelligence, 133(1), 139–188.

    Article  Google Scholar 

  • Clewley, R. (2004). Dominant-scale analysis for the automatic reduction of high-dimensional ODE systems. In: Y. Bar-Yam (Ed.), ICCS 2004 proceedings. New England Complex Systems Institute.

  • Clewley, R., Rotstein, H. G., & Kopell, N. (2005). A computational tool for the reduction of nonlinear ODE systems possessing multiple scales. Multiscale Modeling and Simulation, 4(3), 732–759.

    Article  Google Scholar 

  • Clewley, R., Soto-Treviño, C., & Nadim, F. (2009). Dominant ionic mechanisms explored in the transition between spiking and bursting using local low-dimensional reductions of a biophysically realistic model neuron. Journal of Computational Neuroscience, 26(1), 75–90.

    Article  PubMed  Google Scholar 

  • Clewley, R. H., Sherwood, W. E., LaMar, M. D., Guckenheimer, J. M. (2007). PyDSTool, a software environment for dynamical systems modeling. http://pydstool.sourceforge.net. Accessed 11 August 2010.

  • Coiera, E. (1992). The qualitative representation of physical systems. The Knowledge Engineering Review, 7(11), 55–77.

    Article  Google Scholar 

  • Cymbalyuk, G., Gaudry, Q., Masino, M. A., & Calabrese, R. L. (2002). Bursting in leech heart interneurons: Cell-autonomous and network-based mechanisms. Journal of Neuroscience, 22(24), 10580–10592.

    PubMed  CAS  Google Scholar 

  • Deuflhard, P., & Heroth, J. (1996). Dynamic dimension reduction in ODE models. In: F. Keil, W. Mackens, H. Voß, & J. Werther (Eds.), Scientific computing in chemical engineering (pp. 29–43). Springer.

  • Dickinson, M. H., Farley, C. T., Full, R. J., Koehl, M. A. R., Kram, R., & Lehman, S. (2000). How animals move: An integrative view. Science, 288, 100–106.

    Article  PubMed  CAS  Google Scholar 

  • Doedel, E., Keller, H. B., Kernevez, J. P. (1991). Auto. International Journal of Bifurcation and Chaos, 1, 493.

    Article  Google Scholar 

  • Druckmann, S., Banitt, Y., Gidon, A., Schurmann, F., Markram, H., & Segev, I. (2007). A novel multiple objective optimization framework for constraining conductance-based neuron models a novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data. Frontiers in Neuroscience, 1(1), 7–18.

    Article  PubMed  Google Scholar 

  • Druckmann, S., Berger, T. K., Hill, S., Schurmann, F., & Segev, I. (2008). Evaluating automated parameter constraining procedures of neuron models by experimental and surrogate data. Biological Cyberneticsio, 99, 371–379.

    Article  Google Scholar 

  • Eckhaus, W. (1979). Asymptotic analysis of singular perturbations. North-Holland, Amsterdam.

    Google Scholar 

  • Edwards, D. (2010). Neuromechanical simulation. Frontiers in Behavioral Neuroscience. doi:10.3389/fnbeh.2010.00040.

    PubMed  Google Scholar 

  • Ermentrout, G. B., & Kopell, N. (1998). Fine structure of neural spiking and synchronization in the presence of conduction delays. Proceedings of the National Academy of Sciences of the United States of America, 95, 1259–1264.

    Article  PubMed  CAS  Google Scholar 

  • Fishwick, P. A., Narayanan, N. H., Sticklen, J., & Bonarini, A. (1994). A multimodel approach to reasoning and simulation. IEEE Transactions on Systems, Man, and Cybernetics, 24(10), 1433–1449.

    Article  Google Scholar 

  • Fitzhugh, R. (1961). Impulses and physiological states in models of nerve membrane. Biophysical Journal, 1, 445–466.

    Article  PubMed  CAS  Google Scholar 

  • Hairer, E., Nørsett, S. P., & Wanner, G. (1993). Solving ordinary differential equations (Vol. 1). Springer.

  • Hodgkin, A. L., & Huxley, A. F. (1952). Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. Journal of Physiology, 117, 500–544.

    PubMed  CAS  Google Scholar 

  • Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Computing in Science & Engineering, 9(3), 90–95. doi:10.1109/MCSE.2007.55.

    Article  Google Scholar 

  • Jones, C. (1994). Geometric singular perturbation theory. In: L. Arnold (Ed.), Dynamical systems, Montecatini Terme. Lecture notes in mathematics (Vol. 1609, pp. 44–118). Berlin: Springer.

    Google Scholar 

  • Jones, E., Oliphant, T., Peterson, P., et al. (2001). SciPy: Open source scientific tools for Python. http://www.scipy.org/. Accessed 11 August 2010.

  • de Jong, H., & van Raalte, F. (1999). Comparative envisionment construction: A technique for the comparative analysis of dynamical systems. Artificial Intelligence, 115, 145–214.

    Article  Google Scholar 

  • Kopell, N., Ermentrout, G. B., Whittington, M. A., & Traub, R. D. (1999). Gamma rhythms and beta rhythms have different synchronization properties. Proceedings of the National Academy of Sciences of the United States of America, 97, 1867–1872.

    Article  Google Scholar 

  • Lind, D., & Marcus, B. (1995). An introduction to symbolic dynamics and coding. Cambridge University Press.

  • Morris, C., & LeCar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophysical Journal, 35, 193–213.

    Article  PubMed  CAS  Google Scholar 

  • Oliphant, T. E. (2006). Guide to NumPy. Provo, UT. http://www.tramy.us/. Accessed 11 August 2010.

  • Olypher, A. V., & Calabrese, R. L. (2007). Using constraints on neuronal activity to reveal compensatory changes in neuronal parameters. Journal of Neurophysiology, 98, 3749–3758.

    Article  PubMed  Google Scholar 

  • Prinz, A. A., Bucher, D., & Marder, E. (2004). Similar network activity from disparate circuit parameters. Nature Neuroscience, 7(12), 1345–1353.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds, D., Carlson, J. M., & Doyle J. (2002). Design degrees of freedom and mechanisms for complexity. Physical Review. E, 66(016108).

    Article  Google Scholar 

  • Rinzel, J., & Ermentrout, G. B. (1989). Analysis of neural exitability and oscillations. In: C. Koch, & I. Segev (Eds.), Methods in neuronal modelling: From synapses to networks. Cambridge, MA: MIT Press.

    Google Scholar 

  • Rubin, J., & Wechselberger, M. (2007). Giant squid—hidden canard: The 3D geometry of the Hodgkin-Huxley model. Biological Cybernetics, 97, 5–32.

    Article  PubMed  Google Scholar 

  • van der Schaft, A. (2004). Equivalence of hybrid dynamical systems. In: Proc. of Mathematical Theory of Networks and Systems (MTNS 04).

  • van der Schaft, A. J., & Schumacher, J. M. (2001). Compositionality issues in discrete, continuous, and hybrid systems. International Journal of Robust and Nonlinear Control, 11, 417–434.

    Article  Google Scholar 

  • Smolinski, T. G., Rabbah, P., Soto-Treviño, C., Nadim, F., & Prinz, A. A. (2006). Analysis of biological neurons via modeling and rule mining. International Journal of Information Technology & Intelligent Computing, 1(2), 293–302.

    Google Scholar 

  • Strogatz, S. H. (2001). Nonlinear dynamics and chaos. Perseus Books

  • Suckley, R., & Biktashev, V. (2003). The asymptotic structure of the Hodgkin-Huxley equations. International Journal of Bifurcation and Chaos, 13(12), 3805–3826.

    Article  Google Scholar 

  • Tien, J. H., & Guckenheimer, J. (2008). Parameter estimation for bursting neuron models. Journal of Computational Neuroscience, 24(3), 358–373.

    Article  PubMed  Google Scholar 

  • Villoslada, P., Steinman, L., & Baranzini, S. (2009). Systems biology and its application to the understanding of neurological diseases. Annals of Neurology, 65(2), 124–139.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X. J., & Buzsáki, G. (1996). Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. Journal of Neuroscience, 16, 6402–6413.

    PubMed  CAS  Google Scholar 

  • Zhao, F. (1994). Intelligent computing about complex dynamical systems. Mathematics and Computers in Simulation, 36, 423–432.

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous reviewers for their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Clewley.

Additional information

Action Editor: J. Rinzel

Supported by NSF CISE/CCF-0829742 and a Georgia State University Brains & Behavior Seed Grant.

Appendices

Appendix A: Model kinetics and parameters

For all three test models, the total ionic current is \(\sum I_{\textrm{\tiny ionic}} = g_{Na} m h^3 (V-E_{Na}) + g_K n^4 (V-E_K) + g_L (V - E_L)\). For the Wang-Buzsáki model, m = m  ∞ (V), otherwise all gating variables are given by Eq. (2). The channel rate kinetics of any gating variable s are converted into s  ∞  and τ s according to the standard definitions, s  ∞  = α s / (α s  + β s ) and τ s  = 1 / (α s  + β s ), for the forward and backward rate functions α s and β s , respectively.

1.1 A.1 Classic Hodgkin-Huxley model

$$\begin{array}{rll} \alpha_m & = & 0.1(V+40)/(1-\exp(-(V+40)/10)) \\ \beta_m & = & 4\exp(-(V+65)/18) \\ \alpha_h & = & 0.07\exp(-(V+65)/20) \\ \beta_h & = & 1/(1+\exp(-(V+35)/10)) \\ \alpha_n & = & 0.01(V+55)/(1-\exp(-(V+55)/10)) \\ \beta_n & = & 0.125\exp(-(V+65)/80) \end{array}$$

Parameter values: g Na  = 120, g K  = 36, g L  = 0.3, E Na  = 50, E K  = − 77, E L  = − 54.4, \(I_{\textrm{\tiny applied}} = 8\), C = 1.

1.2 A.2 Wang-Buzsáki interneuron model

$$\begin{array}{rll} \alpha_m & = & 0.1(V+35)/(1-\exp(-(V+35)/10)) \\ \beta_m & = & 4\exp(-(V+60)/18) \\ \alpha_h & = & 0.35\exp(-(V+58)/20) \\ \beta_h & = & 5/(1+\exp(-(V+28)/10)) \\ \alpha_n & = & 0.05(V+34)/(1-\exp(-(V+34)/10)) \\ \beta_n & = & 0.625 \exp(-(V+44)/80) \end{array}$$

Parameter values: g Na  = 35, g K  = 9, g L  = 0.1, E Na  = 55, E K  = − 90, \(E_L = -65, I_{\textrm{\tiny applied}}=2.5, C = 1\).

1.3 A.3 Alternative interneuron model

$$\begin{array}{rll} \alpha_m & = & 0.32(V+54)/(1-\exp(-(V+54)/4)) \\ \beta_m & = & 0.28(V+27)/(\exp((V+27)/5)-1) \\ \alpha_h & = & 0.128\exp(-(50+V)/18) \\ \beta_h & = & 4/(1+\exp(-(V+27)/5)) \\ \alpha_n & = & 0.032(V+52)/(1-\exp(-(V+52)/5)) \\ \beta_n & = & 0.5\exp(-(57+V)/40) \end{array}$$

Parameter values: g Na  = 100, g K  = 80, g L  = 0.1, E Na  = 100, E K  = − 100, E L  = − 67, \(I_{\textrm{\tiny applied}}=2\), C = 1.

1.4 A.4 Leech heart interneuron

The details of the channel kinetics are given in Cymbalyuk et al. (2002). All channels are given by the standard Hodgkin-Huxley formalism. The parameters for the tonic spiking regime of the HN interneuron model were: g L  = 8.0, E L  = − 60, g CaF  = 5, g CaS  = 3.2, E Ca  = 135, g K1 = 100, g K2 = 80, g KA  = 80, E K  = − 70, g H  = 4, E H  = − 21, g P  = 7, E Na  = 45, g Na  = 200, \(I_{\textrm{\tiny applied}}=0\), C = 0.5.

Appendix B: Dominant scale sets for the original neuron models

The \({\mathcal{A}_\Psi}\) and \({\mathcal{A}_\Omega}\) sets for the periodic orbit of the Type II Hodgkin-Huxley model are shown in Tables 2 and 3, using σ = γ = 4. The time intervals for each epoch are not contiguous due to the discrete time points from the numerically computed periodic orbit. However, the dominant scales method does not require the transitions to be computed more accurately. A graphic view of these transitions overlaid on the periodic orbit is presented in Fig. 2. Corresponding sets for the Type I HH and Wang-Buzsáki models are shown in Tables 47. In these tables, variables are labeled fast or slow only if they belong to \({\mathcal{F}}\) or \({\mathcal{S}}\) for the entire epoch. All times are shown to the nearest 1/100 ms.

Table 2 Ordered sets of active and modulatory variables during one period of the Type II HH model orbit, using Ψ
Table 3 Ordered sets of active and modulatory variables during one period of the Type II HH model orbit, using Ω
Table 4 Ordered sets of active and modulatory variables during one period of the Type I HH model orbit, using Ψ
Table 5 Ordered sets of active and modulatory variables during one period of the Type I HH model orbit, using Ω
Table 6 Ordered sets of active and modulatory variables during one period of the Type I WB model orbit, using Ψ
Table 7 Ordered sets of active and modulatory variables during one period of the Type I WB model orbit, using Ω

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clewley, R. Encoding the fine-structured mechanism of action potential dynamics with qualitative motifs. J Comput Neurosci 30, 391–408 (2011). https://doi.org/10.1007/s10827-010-0267-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-010-0267-y

Keywords

Navigation