Skip to main content
Log in

An analysis of interface trap charges to improve the reliability of a charge-plasma-based nanotube tunnel FET

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A new heterodielectric shifted-core-gate nanotube tunneling field-effect transistor (HD-SCG-NT-TFET) is proposed with a higher ON-state current and a better subthreshold swing (SS) compared with the conventional core-gate NT-TFET structure. The charge plasma phenomenon is employed to induce charge carriers inside the channel and source region by applying an appropriate metal workfunction. A brief comparative analysis of the influence of the high-K gate dielectric on the interface trap charges (ITCs) and the resulting effect on the performance of the nanotube structures is also presented for different direct-current (DC) parameters. A reliability analysis for the nanotube TFET is presented for the first time to test how efficiently the proposed device follows the original characteristics. To address reliability concerns for low-power applications, the nanotube TFET structures are investigated in terms of their ION, IOFF, subthreshold swing (SS), and ION/IOFF ratio. All of the analyses are performed in the presence of negative, neutral, and positive ITCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Lundstrom, M.: Moore’s law forever? Science 299, 210–211 (2003)

    Article  Google Scholar 

  2. Mohankumar, N., Syamal, B., Sarkar, C.K.: Influence of channel and gate engineering on the analog and RF performance of DG MOSFETs. IEEE Trans. Electron Devices 57, 820–826 (2010)

    Article  Google Scholar 

  3. Kilchytska, V., Neve, A., Vancaillie, L., Levacq, D., Adriaensen, S., van Meer, H., Meyer, K.D., Raynaud, C., Dehan, M., Raskin, J.P., Flandre, D.: Influence of device engineering on the analog and RF performances of SOI MOSFETs. IEEE Trans. Electron Devices 50, 577–588 (2003)

    Article  Google Scholar 

  4. Bangsaruntip, S., Cohen, G.M., Majumdar, A., Sleight, J.W.: Universality of short-channel effects in undoped-body silicon nanowire MOSFETs. IEEE Electron Devices Lett. 31, 903–905 (2010)

    Article  Google Scholar 

  5. Koswatta, S. O., Lundstrom, M. S.,Nikonov, D. E.: Performance comparison between p-i-n tunneling transistors and conventional MOSFETs.IEEE Trans. Electron Devices 56, 456–465 (2009)

  6. Hajare, R., Lakshminarayana, C., Raghunandan, G.H., et al.: Performance enhancement of FINFET and CNTFET at different node technologies. Microsyst. Technol. 22, 1121–1126 (2016)

    Article  Google Scholar 

  7. Seabaugh, A.C., Zhang, Q.: Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98, 2095–2110 (2010)

    Article  Google Scholar 

  8. Boucart, K., Ionescu, A. M.: Double gate tunnel FET with high-k gate dielectric. IEEE Trans. Electron Devices 54, 1725–1733 (2007)

  9. Ionescu, A.M., Rie, H.: Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479, 329–337 (2011)

    Article  Google Scholar 

  10. Vishnoi, R., Kumar, M.J.: A compact analytical model for the drain current of gate-all-around nanowire tunnel FET accurate from sub-threshold to ON-state. IEEE Trans. Electron Devices 14, 358–362 (2015)

    Google Scholar 

  11. Fahad,H. M., Hussain, M. M.: High-performance silicon nanotube tunneling FET for ultralow-power logic applications.IEEE Trans. Electron Devices 60, 1034–1039 (2013)

  12. Hanna, A. N., Hussain, M. M.:Si/Ge hetero-structure nanotube tunnel field effect transistor. J. Appl. Phys. 117, 014310(2015)

  13. Hanna, A.N., Fahad, H.M., Hussain, M.M.: InAs/Si heterojunction nanotube tunnel transistors. Sci. Rep. 5, 9843 (2015)

    Article  Google Scholar 

  14. Fahad, H. M.,Smith, C. E.,Rojas, J. P., Hussain, M. M.: Silicon nanotube field effect transistor with core–shell Gate stacksfor enhanced high-performance operation and area scaling benefits. Nano Lett. 11, 4393–4399 (2011)

  15. Johnson, R.W., Hultqvist, A., Bent, S.F.: A brief review of atomic layer deposition: fundamentals to applications. Mater. Today 17, 236–246 (2017)

    Article  Google Scholar 

  16. Ghosh, P., Haldar, S., Gupta, R.S., Gupta, M.: An investigation of linearity performance and intermodulation distortion of GME CGT MOSFET for RFIC design. IEEE Trans. Electron Devices 59, 3263–3268 (2012)

    Article  Google Scholar 

  17. Pradhan, K.P., Mohapatra, S.K., Sahu, P.K., Behera, D.K.: Impact of high-k gate dielectric on analog and RF performance of nanoscale DG-MOSFET. Microelectron. J. 45, 144–151 (2014)

    Article  Google Scholar 

  18. Wang, R.et al.: Investigations on line-edge roughness (LER) and line width roughness (LWR) in nanoscale CMOS technology: Part II-Experimental results and impacts on device variability.IEEE Trans. Electron Devices 60, 3676–3682 (2013)

  19. Pala, M. G.,Esseni, D., Conzatti, F.: Impact of interface traps on the IV curves of InAs tunnel-FETs and MOSFETs: A full quantum study. Proc. IEEE IEDM, 1–4 (2012)

  20. Mohapatra, S.K., Pradhan, K.P., Sahu, P.K.: Resolving the bias point for wide range of temperature applications in high-k/metal gate nanoscale DG-MOSFET. Facta Universitatis, Series: Electronics and Energetics. 27, 613–619 (2014)

    Google Scholar 

  21. Sant, S. et al.: Lateral InAs/Si p-type tunnel FETs integrated on Si—Part 2: Simulation study of the impact of interface traps.IEEE Trans. Electron Devices 63, 4240–4247 (2016)

  22. Kumar,N., Raman, A.: Performance assessment of the Charge-Plasma-Based cylindrical GAA vertical nanowire TFET with impact of interface trap charges. IEEE Trans. Electron Devices 66, 4453–4460 (2019)

  23. Fan, M.-L.,Hu, V. P.-H.,Chen, Y.-N., Su, P.,Chuang,C.-T.: Analysis of single-trap-induced random telegraph noise and its interaction with work function variation for tunnel FET.IEEE Trans. Electron Devices 60, 2038–2044 (2013)

  24. Jiao, G.F., et al.: New degradation mechanisms and reliability performance in tunneling field effect transistors. In: Proc. IEEE IEDM, Baltimore, MD, USA, pp. 1–4 (2009)

  25. Madan, J., Chaujar, R.: Interfacial charge analysis of heterogeneous gate dielectric-gate all around-tunnel FET for improved device reliability. IEEE Trans. Device Mater. Rel 16, 227–234 (2016)

  26. Ghosh, B., Akram, M.W.: Junctionless tunnel field effect transistor. IEEE Electron Device Lett. 34, 584–586 (2013)

    Article  Google Scholar 

  27. Kumar, M. J., Janardhanan, S.: Doping-less tunnel field effect transistor: design and investigation. IEEE Trans. Electron Devices 60, 3285–3290(2013)

    Article  Google Scholar 

  28. Yadav, S., Lemtur, A., Sharma, D., Aslam, M., Soni, D.: An effective approach to enhance DC and high frequency performance of electrically doped TFET. Micro & Nano Lett. 13, 1469–1474 (2018)

    Article  Google Scholar 

  29. Yadav, S., Aslam, M., Soni, D., Sharma, D.: A novel hetero-material gate-underlap electrically doped TFET for improving DC/RF and ambipolar behavior. Superlattices Microstruct. 117, 9–17 (2018)

    Article  Google Scholar 

  30. ATLAS User’s manual Device Simulation Software: Silvaco Int. Santa Clara, CA, USA (2015)

    Google Scholar 

  31. Chiang,T.-K.: A compact model for threshold voltage of surrounding gate MOSFETs with localized interface trapped charges. IEEE Trans.Electron Devices 58, 567–571 (2011)

    Article  Google Scholar 

  32. Shabde, S., Bhattacharyya, A., Kao, R. S., Muller R. S.: Analysis of MOSFET degradation due to hot-electron stress in terms of interface state and fixed-charge generation. Solid State Electron 31,1603–1610 (1988)

    Article  Google Scholar 

  33. Hueting, R.J.E., Rajasekharan, B., Salm, C., et al.: The charge plasma diode. IEEE Electron Device Lett. 29, 1367–1369 (2008)

    Article  Google Scholar 

  34. Rajasekharan, B., Hueting, R.J.E., et al.: Fabrication and characterization of the charge-plasma diode. IEEE Electron Device Lett. 31, 528–530 (2010)

    Article  Google Scholar 

  35. Pahwa, G., Dutta, T., Agarwal, A., et al.: Analysis and compact modeling of negative capacitance transistor with high ON-current and negative output differential resistance Part II: model validation. IEEE Trans. Electron Devices 63, 4986–4992 (2016)

    Article  Google Scholar 

  36. Sahay, S., Kumar, M.J.: Comprehensive analysis of gate-induced drain leakage in emerging FET architectures: Nanotube FETs versus nanowire FETs. IEEE Access. 5, 18918–18926 (2017)

    Article  Google Scholar 

  37. Sahay, S., Kumar, M.J.: Nanotube junctionless FET: Proposal, design, and investigation. IEEE Trans. Electron Devices 64, 1851–1856 (2017)

    Article  Google Scholar 

  38. Asai, H., Mori, T., Matsukawa, T., Hattori, J., Endo, K. and Fukuda, K.: Steep switching less than 15 mV dec−1 in silicon-on-insulator tunnel FETs by a trimmed-gate structure. Jpn. J. Appl. Phys. 58, (2019).

  39. Gedam, A., Acharya, B., Mishra, G.P.: Junctionless silicon nanotube TFET for improved DC and radio frequency performance. SILICON 13, 167–178 (2021)

    Article  Google Scholar 

  40. Gandhi, R., Chen, Z., Singh, N., Banerjee, K., Lee, S.: Vertical Sinanowire n-type tunneling FETs with low subthreshold swing at room temperature. IEEE Electron Device Lett. 32, 437–439 (2011)

    Article  Google Scholar 

  41. Moselund, K.E., Schmid, H., Bessire, C., Bjork, M.T., Ghoneim, H., Riel, H.: IEEE Electron Device Lett. 33, 1453–1455 (2012)

    Article  Google Scholar 

  42. Kumar, N., Mushtaq, U., Amin, S.I., Anand, S.: Design and performance analysis of dual-gate all around core-shell nanotube TFET. Superlattices Microstructures. 125, 356–364 (2019)

    Article  Google Scholar 

  43. Yadav, S., Madhukar, R., Sharma, D., Aslam, M., Soni, D., Sharma, N.: A new structure of electrically doped TFET for improving electronic characteristics. Appl. Phys. 124, 1–9 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guru Prasad Mishra.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gedam, A., Acharya, B. & Mishra, G.P. An analysis of interface trap charges to improve the reliability of a charge-plasma-based nanotube tunnel FET. J Comput Electron 20, 1157–1168 (2021). https://doi.org/10.1007/s10825-021-01696-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01696-6

Keywords

Navigation