Skip to main content
Log in

Systematic computational identification of promiscuity cliff pathways formed by inhibitors of the human kinome

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The ability of a small molecule to interact with multiple target proteins provides the molecular basis of polypharmacology. So-defined compound promiscuity is intensely investigated in drug discovery. For example, for kinase inhibitors, the interplay between target selectivity and promiscuity plays a decisive role for different therapeutic applications. The “promiscuity cliff” (PC) concept was introduced previously to aid in promiscuity analysis. A PC is defined as a pair of structurally similar compounds with a large difference in promiscuity. Accordingly, PCs can reveal small structural modifications that might be responsible for selectivity or multi-target activity. In network representations, PCs form clusters of varying size and complexity that are difficult to analyze interactively. Herein, we introduce a computational method to systematically identify PC pathways, which are particularly rich in structure-promiscuity information, and extract them from PC clusters. PC pathways provide informative templates for experimental design. In a proof-of-concept investigation, we have applied the new computational approach to systematically identify pathways in more than 600 PC clusters formed by inhibitors of the human kinome, demonstrating the utility of the method and revealing many interesting promiscuity patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. McGovern SL, Caselli E, Grigorieff N, Shoichet BK (2002) A common mechanism underlying promiscuous inhibitors from virtual and high-throughput screening. J Med Chem 45:1712–1722

    Article  CAS  PubMed  Google Scholar 

  2. Feng BY, Shelat A, Doman TN, Guy RK, Shoichet BK (2005) High-throughput assays for promiscuous inhibitors. Nat Chem Biol 1:146–148

    Article  CAS  PubMed  Google Scholar 

  3. Shoichet BK (2006) Screening in a spirit haunted world. Drug Discov Today 11:607–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Baell JB, Holloway GA (2010) New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 53:2719–2740

    Article  CAS  PubMed  Google Scholar 

  5. Baell J, Walters MA (2014) Chemistry: chemical con artists foil drug discovery. Nature 513:481–483

    Article  CAS  PubMed  Google Scholar 

  6. Hu Y, Bajorath J (2013) Compound promiscuity: what can we learn from current data? Drug Discov Today 18:644–650

    Article  CAS  PubMed  Google Scholar 

  7. Hu Y, Bajorath J (2013) High-resolution view of compound promiscuity. F1000Research 2:e144

    Article  Google Scholar 

  8. Anighoro A, Bajorath J, Rastelli G (2014) Polypharmacology: challenges and opportunities in drug discovery. J Med Chem 57:7874–7887

    Article  CAS  PubMed  Google Scholar 

  9. Nurse P (1997) The ends of understanding. Nature 387:657–657

    Article  CAS  PubMed  Google Scholar 

  10. Roukos DH (2011) Networks medicine: from reductionism to evidence of complex dynamic biomolecular interactions. Pharmacogenomics 12:695–698

    Article  PubMed  Google Scholar 

  11. Arrowsmith CH, Audia JE, Austin C, Baell J, Bennett J, Blagg J, Bountra C, Brennan PE, Brown PJ, Bunnage ME, Doepner-Buser C, Campbell RM, Carter AJ, Cohen P, Copeland RA, Cravatt B, Dahlin JL, Dhanak D, Edwards AM, Frederiksen M, Frye SV, Gray N, Grimshaw CE, Hepworth D, Howe T, Huber KVM, Jin J, Knapp S, Kotz JD, Kruger RG, Lowe D, Mader MM, Marsden B, Mueller-Fahrnow A, Müller S, O’Hagan RC, Overington JP, Owen DR, Rosenberg SH, Ross R, Roth B, Schapira M, Schreiber SL, Shoichet B, Sundström M, Superti-Furga G, Taunton J, Toledo-Sherman L, Walpole C, Walters MA, Willson TM, Workman P, Young RN, Zuercher WJ (2015) The promise and peril of chemical probes. Nat Chem Biol 11:536–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Miljković F, Bajorath J (2018) Data-driven exploration of selectivity and off-target activities of designated chemical probes. Molecules 23:e2434

    Article  CAS  PubMed  Google Scholar 

  13. Knight ZA, Lin H, Shokat KM (2010) Targeting the cancer kinome through polypharmacology. Nat Rev Cancer 10:130–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gross S, Rahal R, Stransky N, Lengauer C, Hoeflich KP (2015) Targeting cancer with kinase inhibitors. J Clin Invest 125:1780–1789

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bolognesi ML, Cavalli A (2016) Multitarget drug discovery and polypharmacology. ChemMedChem 11:1190–1192

    Article  CAS  PubMed  Google Scholar 

  16. Stumpfe D, Tinivella A, Rastelli G, Bajorath J (2017) Promiscuity of inhibitors of human protein kinases at varying data confidence levels and test frequencies. RSC Adv 7:41265–41271

    Article  CAS  Google Scholar 

  17. Gaulton A, Hersey A, Nowotka M, Bento AP, Chambers J, Mendez D, Mutowo P, Atkinson F, Bellis LJ, Cibrián-Uhalte E, Davies M, Dedman N, Karlsson A, Magariños MP, Overington JP, Papadatos G, Smit I, Leach AR (2017) The ChEMBL database in 2017. Nucleic Acids Res 45(Database issue):D945–D954

    Article  CAS  PubMed  Google Scholar 

  18. Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He S, Shoemaker BA, Wang J, Yu B, Zhang J, Bryant SH (2016) PubChem substance and compound databases. Nucleic Acids Res 44(Database issue):D1202–D1213

    Article  CAS  PubMed  Google Scholar 

  19. Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP (2008) A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol 26:127–132

    Article  CAS  PubMed  Google Scholar 

  20. Anastassiadis T, Deacon SW, Devarajan K, Ma H, Peterson JR (2011) Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity. Nat Biotechnol 29:1039–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Clemons PA, Bodycombe NE, Carrinski HA, Wilson JA, Shamji AF, Wagner BK, Koehler AN, Schreiber SL (2010) Small molecules of different origins have distinct distributions of structural complexity that correlate with protein-binding profiles. Proc Natl Acad Sci USA 107:18787–18792

    Article  PubMed  Google Scholar 

  22. Elkins JM, Fedele V, Szklarz M, Abdul Azeez KR, Salah E, Mikolajczyk J, Romanov S, Sepetov N, Huang XP, Roth BL, Al Haj Zen A, Fourches D, Muratov E, Tropsha A, Morris J, Teicher BA, Kunkel M, Polley E, Lackey KE, Atkinson FL, Overington JP, Bamborough P, Müller S, Price DJ, Willson TM, Drewry DH, Knapp S, Zuercher WJ (2016) Comprehensive characterization of the published kinase inhibitor set. Nat Biotechnol 34:95–103

    Article  CAS  PubMed  Google Scholar 

  23. Klaeger S, Heinzlmeir S, Wilhelm M, Polzer H, Vick B, Koenig PA, Reinecke M, Ruprecht B, Petzoldt S, Meng C, Zecha J, Reiter K, Qiao H, Helm D, Koch H, Schoof M, Canevari G, Casale E, Depaolini SR, Feuchtinger A, Wu Z, Schmidt T, Rueckert L, Becker W, Huenges J, Garz AK, Gohlke BO, Zolg DP, Kayser G, Vooder T, Preissner R, Hahne H, Tõnisson N, Kramer K, Götze K, Bassermann F, Schlegl J, Ehrlich HC, Aiche S, Walch A, Greif PA, Schneider S, Felder ER, Ruland J, Médard G, Jeremias I, Spiekermann K, Kuster B (2017) The target landscape of clinical kinase drugs. Science 358:eaan4368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dimova D, Hu Y, Bajorath J (2012) Matched molecular pair analysis of small molecule microarray data identifies promiscuity cliffs and reveals molecular origins of extreme compound promiscuity. J Med Chem 55:10220–10228

    Article  CAS  PubMed  Google Scholar 

  25. Bajorath J (2017) From activity cliffs to promiscuity cliffs. Fut Sci OA 3:FSO227

    Article  CAS  Google Scholar 

  26. Dimova D, Bajorath J (2018) Rationalizing promiscuity cliffs. ChemMedChem 13:490–494

    Article  CAS  PubMed  Google Scholar 

  27. Dimova D, Gilberg E, Bajorath J (2017) Identification and analysis of promiscuity cliffs formed by bioactive compounds and experimental implications. RSC Adv 7:58–66

    Article  CAS  Google Scholar 

  28. Miljković F, Bajorath J (2018) Computational analysis of kinase inhibitors identifies promiscuity cliffs across the human kinome. ACS Omega 3:17295–17308, 2018

    Article  CAS  Google Scholar 

  29. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934

    Article  CAS  PubMed  Google Scholar 

  30. Noble MEM, Endicott JA, Johnson LN (2004) Protein kinase inhibitors: insights into drug design from structure. Science 303:1800–1805

    Article  CAS  PubMed  Google Scholar 

  31. Levitzki A (2013) Tyrosine kinase inhibitors: views of selectivity, sensitivity, and clinical Performance. Annu Rev Pharmacol Toxicol 53:161–185

    Article  CAS  PubMed  Google Scholar 

  32. Miljković F, Bajorath J (2018) Exploring selectivity of multikinase inhibitors across the human kinome. ACS Omega 3:1147–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Miljković F, Bajorath J (2018) Reconciling selectivity trends from a comprehensive kinase inhibitor profiling campaign with known activity data. ACS Omega 3:3113–3119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Miljković F, Bajorath J (2018) Evaluation of kinase inhibitor selectivity using cell-based profiling data. Mol Inform 37:e1800024

    Article  CAS  PubMed  Google Scholar 

  35. Hu X, Hu Y, Vogt M, Stumpfe D, Bajorath J (2012) MMP-cliffs: systematic identification of activity cliffs on the basis of matched molecular pairs. J Chem Inf Model 52:1138–1145

    Article  CAS  PubMed  Google Scholar 

  36. Kenny PW, Sadowski J (2004) Structure modification in chemical databases. In: Oprea TI (ed) Chemoinformatics in drug discovery. Wiley-VCH, Weinheim, pp 271–285

    Google Scholar 

  37. Hussain J, Rea C (2010) Computationally efficient algorithm to identify matched molecular pairs (MMPs) in large data sets. J Chem Inf Model 50:339–348

    Article  CAS  PubMed  Google Scholar 

  38. Shannon CE (1948) A mathematical theory of communication. Bell Syst Techn J 27:379–423

    Article  Google Scholar 

  39. Hagberg AA, Schult DA, Swart PJ (2008) Exploring network structure, dynamics, and function using NetworkX. In: Varoquaux G, Vaught T, Millman J (eds) Proceedings of the 7th python in science conference (SciPy 2008), Pasadena, CA, Aug 19–24, pp 11–15

  40. Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1:269–271

    Article  Google Scholar 

  41. Kamada T, Kawai S (1989) An algorithm for drawing general undirected graphs. Inf Process Lett 31:7–15

    Article  Google Scholar 

  42. Eid S, Turk S, Volkamer A, Rippmann F, Fulle S (2017) KinMap: a web-based tool for interactive navigation through human kinome data. BMC Bioinform 18:e16

    Article  CAS  Google Scholar 

  43. Hu Y, Jasial S, Gilberg E, Bajorath J (2017) Structure-promiscuity relationship puzzles—extensively assayed analogs with large differences in target annotations. AAPS J 19:856–864

    Article  PubMed  Google Scholar 

  44. Gilberg E, Bajorath J (2019) Recent progress in structure-based evaluation of compound promiscuity. ACS Omega 4:2758–2765

    Article  CAS  Google Scholar 

  45. https://www.zenodo.org

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Bajorath.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miljković, F., Vogt, M. & Bajorath, J. Systematic computational identification of promiscuity cliff pathways formed by inhibitors of the human kinome. J Comput Aided Mol Des 33, 559–572 (2019). https://doi.org/10.1007/s10822-019-00198-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-019-00198-9

Keywords

Navigation