Skip to main content
Log in

Statistical analyses and computational prediction of helical kinks in membrane proteins

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

We have carried out statistical analyses and computer simulations of helical kinks for TM helices in the PDBTM database. About 59 % of 1562 TM helices showed a significant kink, and 38 % of these kinks are associated with prolines in a range of ±4 residues. Our analyses show that helical kinks are more populated in the central region of helices, particularly in the range of 1–3 residues away from the helix center. Among 1,053 helical kinks analyzed, 88 % of kinks are bends (change in helix axis without loss of helical character) and 12 % are disruptions (change in helix axis and loss of helical character). It is found that proline residues tend to cause larger kink angles in helical bends, while this effect is not observed in helical disruptions. A further analysis of these kinked helices suggests that a kinked helix usually has 1–2 broken backbone hydrogen bonds with the corresponding N–O distance in the range of 4.2–8.7 Å, whose distribution is sharply peaked at 4.9 Å followed by an exponential decay with increasing distance. Our main aims of this study are to understand the formation of helical kinks and to predict their structural features. Therefore we further performed molecular dynamics (MD) simulations under four simulation scenarios to investigate kink formation in 37 kinked TM helices and 5 unkinked TM helices. The representative models of these kinked helices are predicted by a clustering algorithm, SPICKER, from numerous decoy structures possessing the above generic features of kinked helices. Our results show an accuracy of 95 % in predicting the kink position of kinked TM helices and an error less than 10° in the angle prediction of 71.4 % kinked helices. For unkinked helices, based on various structure similarity tests, our predicted models are highly consistent with their crystal structure. These results provide strong supports for the validity of our method in predicting the structure of TM helices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. White SH, Wimley WC (1999) Membrane protein folding and stability: physical principles. Annu Rev Bioph Biomol Struct 28:319–365

    Article  CAS  Google Scholar 

  2. Drews J (2000) Drug discovery: a historical perspective. Science 287(5460):1960–1964

    Article  CAS  Google Scholar 

  3. Filmore D (2004) It’s a GPCR world. Mod Drug Discov 7:24–26

    CAS  Google Scholar 

  4. Bowie JU (2005) Solving the membrane protein folding problem. Nature 438(7068):581–589. doi:10.1038/nature04395

    Article  CAS  Google Scholar 

  5. Milik M, Skolnick J (1992) Spontaneous insertion of polypeptide-chains into membranes - a Monte-Carlo model. Proc Natl Acad Sci USA 89(20):9391–9395

    Article  CAS  Google Scholar 

  6. Chen CM (2001) Lattice model of transmembrane polypeptide folding. Phys Rev E 63(1):010901

    Article  Google Scholar 

  7. Floriano WB, Vaidehi N, Goddard WA, Singer MS, Shepherd GM (2000) Molecular mechanisms underlying differential odor responses of a mouse olfactory receptor. Proc Natl Acad Sci USA 97(20):10712–10716

    Article  CAS  Google Scholar 

  8. Dobbs H, Orlandini E, Bonaccini R, Seno F (2002) Optimal potentials for predicting inter-helical packing in transmembrane proteins. Proteins 49(3):342–349. doi:10.1002/prot.10229

    Article  CAS  Google Scholar 

  9. Chen CM, Chen CC (2003) Computer Simulations of membrane protein folding: structure and dynamics. Biophys J 84(3):1902–1908

    Article  CAS  Google Scholar 

  10. Kokubo H, Okamoto Y (2004) Self-assembly of transmembrane helices of bacteriorhodopsin by a replica-exchange Monte Carlo simulation. Chem Phys Lett 392(1–3):168–175. doi:10.1016/j.cplett.2004.04.112

    Article  CAS  Google Scholar 

  11. Chen CC, Chen CM (2009) A dual-scale approach toward structure prediction of retinal proteins. J Struct Biol 165(1):37–46. doi:10.1016/j.jsb.2008.10.001

    Article  CAS  Google Scholar 

  12. Chen CC, Wei CC, Sun YC, Chen CM (2008) Packing of transmembrane helices in bacteriorhodopsin folding: structure and thermodynamics. J Struct Biol 162(2):237–247. doi:10.1016/j.jsb.2008.01.003

    Article  CAS  Google Scholar 

  13. Richardson JS, Richardson DC (1988) Amino acid preferences for specific locations at the ends of alpha helices. Science 240(4859):1648–1652

    Article  CAS  Google Scholar 

  14. Orzaez M, Salgado J, Gimenez-Giner A, Perez-Paya E, Mingarro I (2004) Influence of proline residues in transmembrane helix packing. J Mol Biol 335(2):631–640

    Article  CAS  Google Scholar 

  15. Slepkov ER, Chow S, Lemieux MJ, Fliegel L (2004) Proline residues in transmembrane segment IV are critical for activity, expression and targeting of the Na+/H+ exchanger isoform 1. Biochem J 379(Pt 1):31–38. doi:10.1042/BJ20030884

    Article  CAS  Google Scholar 

  16. Bright JN, Shrivastava IH, Cordes FS, Sansom MS (2002) Conformational dynamics of helix S6 from Shaker potassium channel: simulation studies. Biopolymers 64(6):303–313. doi:10.1002/bip.10197

    Article  CAS  Google Scholar 

  17. Chakrabartty A, Baldwin RL (1995) Stability of alpha-helices. Adv Protein Chem 46:141–176

    Article  CAS  Google Scholar 

  18. Costantini S, Colonna G, Facchiano AM (2006) Amino acid propensities for secondary structures are influenced by the protein structural class. Biochem Biophys Res Commun 342(2):441–451. doi:10.1016/j.bbrc.2006.01.159

    Article  CAS  Google Scholar 

  19. Riek RP, Rigoutsos I, Novotny J, Graham RM (2001) Non-alpha-helical elements modulate polytopic membrane protein architecture. J Mol Biol 306(2):349–362. doi:10.1006/jmbi.2000.4402

    Article  CAS  Google Scholar 

  20. Hall SE, Roberts K, Vaidehi N (2009) Position of helical kinks in membrane protein crystal structures and the accuracy of computational prediction. J Mol Graph Model 27(8):944–950. doi:10.1016/j.jmgm.2009.02.004

    Article  CAS  Google Scholar 

  21. Yohannan S, Faham S, Yang D, Whitelegge JP, Bowie JU (2004) The evolution of transmembrane helix kinks and the structural diversity of G protein-coupled receptors. Proc Natl Acad Sci USA 101(4):959–963. doi:10.1073/pnas.0306077101

    Article  CAS  Google Scholar 

  22. Cao Z, Bowie JU (2012) Shifting hydrogen bonds may produce flexible transmembrane helices. Proc Natl Acad Sci USA 109(21):8121–8126. doi:10.1073/pnas.1201298109

    Article  CAS  Google Scholar 

  23. Langelaan DN, Wieczorek M, Blouin C, Rainey JK (2010) Improved helix and kink characterization in membrane proteins allows evaluation of kink sequence predictors. J Chem Inf Model 50(12):2213–2220. doi:10.1021/ci100324n

    Article  CAS  Google Scholar 

  24. Meruelo AD, Samish I, Bowie JU (2011) TMKink: a method to predict transmembrane helix kinks. Protein Sci 20(7):1256–1264. doi:10.1002/pro.653

    Article  CAS  Google Scholar 

  25. Kneissl B, Mueller SC, Tautermann CS, Hildebrandt A (2011) String kernels and high-quality data set for improved prediction of kinked helices in alpha-helical membrane proteins. J Chem Inf Model 51(11):3017–3025. doi:10.1021/ci200278w

    Article  CAS  Google Scholar 

  26. Wu HH, Chen CC, Chen CM (2012) Replica exchange Monte-Carlo simulations of helix bundle membrane proteins: rotational parameters of helices. J Comput Aided Mol Des 26(3):363–374. doi:10.1007/s10822-012-9562-1

    Article  CAS  Google Scholar 

  27. Wang G, Dunbrack RL Jr (2003) PISCES: a protein sequence culling server. Bioinformatics 19(12):1589–1591

    Article  CAS  Google Scholar 

  28. Mohapatra PK, Khamari A, Raval MK (2004) A method for structural analysis of alpha-helices of membrane proteins. J Mol Model 10(5–6):393–398. doi:10.1007/s00894-004-0212-y

    Article  CAS  Google Scholar 

  29. Lovell SC, Davis IW, Arendall WB 3rd, de Bakker PI, Word JM, Prisant MG, Richardson JS, Richardson DC (2003) Structure validation by Calpha geometry: phi, psi and Cbeta deviation. Proteins 50(3):437–450. doi:10.1002/prot.10286

    Article  CAS  Google Scholar 

  30. Zhou F, Schulten K (1995) Molecular dynamics study of a membrane-water interface. J Phys Chem 99(7):2194–2207

    Article  CAS  Google Scholar 

  31. Tsong TY (1990) Electrical modulation of membrane proteins: enforced conformational oscillations and biological energy and signal transductions. Annu Rev Biophys Biophys Chem 19:83–106. doi:10.1146/annurev.bb.19.060190.000503

    Article  CAS  Google Scholar 

  32. Hunenberger P (2005) Thermostat algorithms for molecular dynamics simulations. Adv Polym Sci 173:105–147. doi:10.1007/B99427

    Google Scholar 

  33. Zhang Y, Skolnick J (2004) SPICKER: a clustering approach to identify near-native protein folds. J Comput Chem 25(6):865–871

    Article  CAS  Google Scholar 

  34. Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181(96):223–230

    Article  CAS  Google Scholar 

  35. Shortle D, Simons KT, Baker D (1998) Clustering of low-energy conformations near the native structures of small proteins. Proc Natl Acad Sci USA 95(19):11158–11162

    Article  CAS  Google Scholar 

  36. Yau WM, Wimley WC, Gawrisch K, White SH (1998) The preference of tryptophan for membrane interfaces. Biochemistry 37(42):14713–14718. doi:10.1021/bi980809c

    Article  CAS  Google Scholar 

  37. Javadpour MM, Eilers M, Groesbeek M, Smith SO (1999) Helix packing in polytopic membrane proteins: role of glycine in transmembrane helix association. Biophys J 77(3):1609–1618. doi:10.1016/S0006-3495(99)77009-8

    Article  CAS  Google Scholar 

  38. Miyano M, Ago H, Saino H, Hori T, Ida K (2010) Internally bridging water molecule in transmembrane alpha-helical kink. Curr Opin Struct Biol 20(4):456–463. doi:10.1016/j.sbi.2010.05.008

    Article  CAS  Google Scholar 

  39. Wallin E, Tsukihara T, Yoshikawa S, von Heijne G, Elofsson A (1997) Architecture of helix bundle membrane proteins: an analysis of cytochrome c oxidase from bovine mitochondria. Protein Sci 6(4):808–815. doi:10.1002/pro.5560060407

    Article  CAS  Google Scholar 

  40. Chang YF, Chen CM (2011) Classification and visualization of the social science network by the minimum span clustering method. J Am Soc Inform Sci Technol 62(12):2404–2413. doi:10.1002/Asi.21634

    Article  Google Scholar 

  41. Zhang Y, Skolnick J (2005) TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res 33(7):2302–2309. doi:10.1093/nar/gki524

    Article  CAS  Google Scholar 

  42. Siew N, Elofsson A, Rychlewski L, Fischer D (2000) MaxSub: an automated measure for the assessment of protein structure prediction quality. Bioinformatics 16(9):776–785

    Article  CAS  Google Scholar 

  43. Zemla A (2003) LGA: a method for finding 3D similarities in protein structures. Nucleic Acids Res 31(13):3370–3374

    Article  CAS  Google Scholar 

  44. Popot JL, Engelman DM (1990) Membrane protein folding and oligomerization: the two-stage model. Biochemistry 29(17):4031–4037

    Article  CAS  Google Scholar 

  45. Kahn TW, Engelman DM (1992) Bacteriorhodopsin can be refolded from two independently stable transmembrane helices and the complementary five-helix fragment. Biochemistry 31(26):6144–6151

    Article  CAS  Google Scholar 

  46. Peled-Zehavi H, Arkin IT, Engelman DM, Shai Y (1996) Co assembly of synthetic segments of shaker K+ channel within phospholipid membranes. Biochemistry 35(21):6828–6838. doi:10.1021/bi952988t

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Science Council of Taiwan under grant of no. NSC 99-2112-M-003 -011 -MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.-M. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, YH., Chen, CM. Statistical analyses and computational prediction of helical kinks in membrane proteins. J Comput Aided Mol Des 26, 1171–1185 (2012). https://doi.org/10.1007/s10822-012-9607-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-012-9607-5

Keywords

Navigation