Skip to main content
Log in

Follicular fluid lipid fingerprinting from women with PCOS and hyper response during IVF treatment

  • Assisted Reproduction Technologies
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Polycystic ovary syndrome (PCOS) is an endocrine-metabolic disorder that leads to lower natural reproductive potential and presents a challenge for assisted reproductive medicine because patients may exhibit immature oocyte retrieval and a higher risk of ovarian hyper stimulation syndrome during in vitro fertilization (IVF) treatment. This study aimed to identify potential lipid biomarkers for women with PCOS and a hyper response to controlled ovarian stimulation.

Methods

Follicular fluid samples were collected from patients who underwent IVF, including normal responder women who became pregnant (control group, n = 11), women with PCOS and a hyper response to gonadotropins (PCOS group, n = 7) and women with only hyper response to gonadotropins (HR group, n = 7). A lipidomic analysis was performed by electrospray ionization mass spectrometry, and candidate biomarkers were analyzed by tandem mass spectrometry experiment.

Results

The lipid profiles indicated particularities related to differences in phosphatidylcholine (PCOS and HR), phosphatidylserine, phosphatydilinositol and phosphatidylglycerol (control), sphingolipids (PCOS) and phosphatidylethanolamine (control and HR).

Conclusions

These findings contribute to the understanding of the molecular mechanisms associated with lipid metabolism in the PCOS-related hyper response, and strongly suggest that these lipids may be useful as biomarkers, leading to the development of more individualized treatment for pregnancy outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ehrmann DA. Polycystic ovary syndrome. N Engl J Med. 2005;24:1223–36.

    Article  Google Scholar 

  2. Dunaif A. Insulin resistance and the polycystic ovary syndrome: mechanism and implications for pathogenesis. Endocr Rev. 1997;18:774–800.

    CAS  PubMed  Google Scholar 

  3. Rotterdam ESHRE/ASRM-Sponsored PCOS consensus workshop group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod. 2004;19:41–7.

    Article  Google Scholar 

  4. Vieira RC, Barcelos ID, Ferreira EM, de Araújo MC, dos Reis RM, Ferriani RA, et al. Evaluation of meiotic abnormalities of oocytes from policystic ovary syndrome patients submitted to ovarian stimulation. Rev Bras Ginecol Obstet. 2008;30:241–7.

    Article  PubMed  Google Scholar 

  5. MacDougall MJ, Tan SL, Balen A, Jacobs HS. A controlled study comparing patients with and without polycystic ovaries undergoing in-vitro fertilization. Hum Reprod. 1993;8:233–7.

    CAS  PubMed  Google Scholar 

  6. Fortune JE. Ovarian follicular growth and development in mammals. Biol Reprod. 1994;50:225–32.

    Article  CAS  PubMed  Google Scholar 

  7. Leroy JL, Vanholder T, Delanghe JR, Opsomer G, Van Soom A, Bols PE, et al. Metabolic changes in follicular fluid of the dominant follicle in high-yielding dairy cows early post partum. Theriog. 2004;15:1131–43.

    Article  Google Scholar 

  8. Lam SM, Shui G. Lipidomics as a principal tool for advancing biomedical research. J Genet Genomics. 2013;20:375–90.

    Article  Google Scholar 

  9. Zehethofer N, Pinto DM. Recent developments in tandem mass spectrometry for lipidomic analysis. Anal Chim Acta. 2008;3:62–70.

    Article  Google Scholar 

  10. Roberts LD, McCombie G, Titman CM, Griffin JL. A matter of fat: an introduction to lipidomic profiling methods. J Chromatogr B Anal Technol Biomed Life Sci. 2008;15:174–81.

    Article  Google Scholar 

  11. Lucki NC, Sewer MB. Multiple roles for sphingolipids in steroid hormone biosynthesis. Subcell Biochem. 2008;49:387–412.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Montani DA, Cordeiro FB, Regiani T, Victorino AB, Pilau EJ, Gozzo FC, et al. The follicular microenviroment as a predictor of pregnancy: MALDI-TOF MS lipid profile in cumulus cells. J Assist Reprod Genet. 2012;29:1289–97.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Shaaker M, Rahimipour A, Nouri M, Khanaki K, Darabi M, Farzadi L, et al. Fatty acid composition of human follicular fluid phospholipids and fertilization rate in assisted reproductive techniques. Iran Biomed J. 2012;16:162–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989;6:64–71.

    Article  Google Scholar 

  15. Iwasaki Y, Nakano Y, Mochizuki K, Nomoto M, Takahashi Y, Ito R, et al. A new strategy for ionization enhancement by derivatization for mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2011;15:1159–65.

    Article  Google Scholar 

  16. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–7.

    Article  CAS  PubMed  Google Scholar 

  17. Nastri CO, Ferriani RA, Rocha IA, Martins WP. Ovarian hyperstimulation syndrome: pathophysiology and prevention. J Assist Reprod Genet. 2010;27:121–8.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Belosi C, Selvaggi L, Apa R, Guido M, Romualdi D, Fulghesu AM, et al. Is the PCOS diagnosis solved by ESHRE/ASRM 2003 consensus or could it include ultrasound examination of the ovarian stroma? Hum Reprod. 2006;21:3108–15.

    Article  CAS  PubMed  Google Scholar 

  19. Webber LJ, Stubbs S, Stark J, Trew GH, Margara R, Hardy K, et al. Formation and early development of follicles in the polycystic ovary. Lancet. 2003;27:1017–21.

    Article  Google Scholar 

  20. Fauser BC, Pache TD, Lamberts SW, Hop WC, de Jong FH, Dahl KD. Serum bioactive and immunoreactive luteinizing hormone and follicle-stimulating hormone levels in women with cycle abnormalities, with or without polycystic ovarian disease. J Clin Endocrinol Metab. 1991;73:811–7.

    Article  CAS  PubMed  Google Scholar 

  21. Taylor AE, McCourt B, Martin KA, Anderson EJ, Adams JM, Schoenfeld D, et al. Determinants of abnormal gonadotropin secretion in clinically defined women with polycystic ovary syndrome. J Clin Endocrinol Metab. 1997;82:2248–56.

    CAS  PubMed  Google Scholar 

  22. Catteau-Jonard S, Bancquart J, Poncelet E, Lefebvre-Maunoury C, Robin G, Dewailly D. Polycystic ovaries at ultrasound: normal variant or silent polycystic ovary syndrome? Ultrasound Obstet Gynecol. 2012;40:223–9.

    Article  CAS  PubMed  Google Scholar 

  23. Kdous M, Chaker A, Zhioua A, Zhioua F. Oocyte and embryo quality and outcome of ICSI cycles in patients with polycystic ovary syndrome (PCOS) versus normo-ovulatory. J Gynecol Obstet Biol Reprod. 2009;38:133–43.

    Article  CAS  Google Scholar 

  24. Lykidis A. Comparative genomics and evolution of eukaryotic phospholipid biosynthesis. Prog Lipid Res. 2007;46:171–99.

    Article  CAS  PubMed  Google Scholar 

  25. Verhoven B, Schlegel RA, Williamson P. Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic T lymphocytes. J Exp Med. 1995;1:1597–601.

    Article  Google Scholar 

  26. Cui Z, Houweling M. Phosphatidylcholine and cell death. Biochim Biophys Acta. 2002;30:87–96.

    Article  Google Scholar 

  27. Kawasaki K, Kuge O, Chang SC, Heacock PN, Rho M, Suzuki K, et al. Isolation of a chinese hamster ovary (CHO) cDNA encoding phosphatidylglycerophosphate (PGP) synthase, expression of which corrects the mitochondrial abnormalities of a PGP synthase-defective mutant of CHO-K1 cells. J Biol Chem. 1999;15:1828–34.

    Article  Google Scholar 

  28. Cataldi T, Cordeiro FB, Costa L do V, Pilau EJ, Ferreira CR, Gozzo FC, Eberlin MN, Bertolla RP, Cedenho AP, Turco EG. Lipid profiling of follicular fluid from women undergoing IVF: young poor ovarian responders versus normal responders. Hum Fertil. 2013; 16:269–77.

  29. Balasubramanian K, Mirnikjoo B, Schroit AJ. Regulated externalization of phosphatidylserine at the cell surface: implications for apoptosis. J Biol Chem. 2007;282:18357–64.

    Article  CAS  PubMed  Google Scholar 

  30. Schroit AJ, Zwaal RF. Transbilayer movement of phospholipids in red cell and platelet membranes. Biochim Biophys Acta. 1991;13:313–29.

    Article  Google Scholar 

  31. Balla T. Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev. 2013;93:1019–137.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Croze ML, Soulage CO. Potential role and therapeutic interests of myo-inositol in metabolic diseases. Biochimie. 2013;95:811–27.

    Article  Google Scholar 

  33. Ciotta L, Stracquadanio M, Pagano I, Carbonaro A, Palumbo M, Gulino F. Effects of myo-inositol supplementation on oocyte’s quality in PCOS patients: a double blind trial. Eur Rev Med Pharmacol Sci. 2011;15:509–14.

    CAS  PubMed  Google Scholar 

  34. Bou Khalil M, Hou W, Zhou H, Elisma F, Swayne LA, Blanchard AP, et al. Lipidomics era: accomplishments and challenges. Mass Spectrom Rev. 2010;29:877–929.

    Article  PubMed  Google Scholar 

  35. van Echten-Deckert G, Walter J. Sphingolipids: critical players in Alzheimer’s disease. Prog Lipid Res. 2012;51:378–93.

    Article  PubMed  Google Scholar 

  36. Santos CR, Schulze A. Lipid metabolism in cancer. FEBS J. 2012;279:2610–23.

    Article  CAS  PubMed  Google Scholar 

  37. Straczkowski M, Kowalska I. The role of skeletal muscle sphingolipids in the development of insulin resistance. Rev Diabet Stud. 2008;5:13–24.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Lucki NC, Sewer MB. The interplay between bioactive sphingolipids and steroid hormones. Steroids. 2010;75:390–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Santana P, Llanes L, Hernandez I, Gonzalez-Robayna I, Tabraue C, Gonzalez-Reyes J, et al. Interleukin-1 beta stimulates sphingomyelin hydrolysis in cultured granulose cells: evidence for a regulatory role of ceramide on progesterone and prostaglandin biosynthesis. Endocrinol. 1996;137:2480–9.

    CAS  Google Scholar 

  40. Lucki NC, Li D, Bandyopadhyay S, Wang E, Merrill AH, Sewer MB. Acid ceramidase (ASAH1) represses steroidogenic factor 1-dependent gene transcription in H295R human adrenocortical cells by binding to the receptor. Mol Cell Biol. 2012;32:4419–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Martin SJ, Reutelingsperger CP, McGahon AJ, Rader JA, van Schie RC, LaFace DM, et al. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med. 1995;182:1545–56.

    Article  CAS  PubMed  Google Scholar 

  42. Emoto K, Umeda M. An essential role for a membrane lipid in cytokinesis. Regulation of contractile ring disassembly by redistribution of phosphatidylethanolamine. T J Cell Biol. 2000;12:1215–24.

    Article  Google Scholar 

  43. Steenbergen R, Nanowski TS, Beigneux A, Kulinski A, Young SG, Vance JE. Disruption of the phosphatidylserine decarboxylase gene in mice causes embryonic lethality and mitochondrial defects. J Biol Chem. 2005;2:40032–40.

    Article  Google Scholar 

  44. Hailey DW, Rambold AS, Satpute-Krishnan P, Mitra K, Sougrat R, Kim PK, et al. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell. 2010;14:656–67.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by CNPq (National Council for Scientific and Technological Development), Brazil and by grant 2012/06389-4, São Paulo Research Foundation (FAPESP).

Conflicts of interest

All authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Suslik Zylbersztejn.

Additional information

Capsule Follicular fluid lipid profile by ESI/MS.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 264 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cordeiro, F.B., Cataldi, T.R., do Vale Teixeira da Costa, L. et al. Follicular fluid lipid fingerprinting from women with PCOS and hyper response during IVF treatment. J Assist Reprod Genet 32, 45–54 (2015). https://doi.org/10.1007/s10815-014-0375-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-014-0375-0

Keywords

Navigation