Skip to main content
Log in

Pharmacological Modulation of GABA Function in Autism Spectrum Disorders: A Systematic Review of Human Studies

  • Original Paper
  • Published:
Journal of Autism and Developmental Disorders Aims and scope Submit manuscript

Abstract

Autism spectrum disorders are an emerging health problem worldwide, but little is known about their pathogenesis. It has been hypothesized that autism may result from an imbalance between excitatory glutamatergic and inhibitory GABAergic pathways. Commonly used medications such as valproate, acamprosate, and arbaclofen may act on the GABAergic system and be a potential treatment for people with ASD. The present systematic review aimed at evaluating the state-of-the-art of clinical trials of GABA modulators in autism. To date there is insufficient evidence to suggest the use of these drugs in autistic subjects, even if data are promising. Of note, short-term use of all the reviewed medications appears to be safe. Future well designed trials are needed to elucidate these preliminary findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abrahams, B. S., & Geschwind, D. H. (2008). Advances in autism genetics: On the threshold of a new neurobiology. Nature Reviews Genetics, 9, 341–355.

    Article  PubMed Central  PubMed  Google Scholar 

  • Abu Shmais, G. A., Al-Ayadhi, L. Y., Al-Dbass, A. M., & El-Ansary, A. K. (2012). Mechanism of nitrogen metabolism-related parameters and enzyme activities in the pathophysiology of autism. Journal of Neurodevelopmental Disorders, 4(1), 4.

    Article  PubMed Central  PubMed  Google Scholar 

  • Alabdali, A., Al-Ayadhi, L., & El-Ansary, A. (2014). Association of social and cognitive impairment and biomarkers in autism spectrum disorders. Journal of Neuroinflammation, 8(11), 4.

    Article  Google Scholar 

  • Amaral, D. G., Schumann, C. M., & Nordahl, C. W. (2008). Neuroanatomy of autism. Trends in Neurosciences, 31, 137–145.

    Article  PubMed  Google Scholar 

  • Banerjee, A., García-Oscos, F., Roychowdhury, S., Galindo, L. C., Hall, S., Kilgard, M. P., et al. (2013). Impairment of cortical GABAergic synaptic transmission in an environmental rat model of autism. International Journal of Neuropsychopharmacology, 16, 1309–1810.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bauman, M. L., & Kemper, T. L. (2005). Neuroanatomic observations of the brain in autism: A review and future directions. International Journal of Developmental Neuroscience, 23, 183–187.

    Article  PubMed  Google Scholar 

  • Berg, A. T., Plioplys, S., & Tuchman, R. (2011). Risk and correlates of autism spectrum disorders in children with epilepsy: A community based study. Journal of Child Neurology, 26, 540–547.

    Article  PubMed Central  PubMed  Google Scholar 

  • Berry-Kravis, E. M., Hessl, D., Rathmell, B., Zarevics, P., Cherubini, M., Walton-Bowen, K., et al. (2012). Effects of STX209 (arbaclofen) on neurobehavioral function in children and adults with fragile X syndrome: A randomized, controlled, phase 2 trial. Science Translational Medicine, 4(152), 152ra127.

    Article  PubMed  Google Scholar 

  • Blatt, G. J., Fitzgerald, C. M., Guptill, J. T., Booker, A. B., Kemper, T. L., & Bauman, M. L. (2001). Density and distribution of hippocampal neurotransmitter receptors in autism: An autoradiographic study. Journal of Autism and Developmental Disorders, 31, 537–543.

    Article  PubMed  Google Scholar 

  • Brogden, R. N., & Goa, K. L. (1991). Flumazenil. A reappraisal of its pharmacological properties and therapeutic efficacy as a benzodiazepine. Drugs, 42, 1061–1089.

    Article  PubMed  Google Scholar 

  • Bu, D. F., Erlander, M. G., Hitz, B. C., Tillakaratne, N. J., Kaufman, D. L., Wagner-McPherson, C. B., et al. (1992). Two human glutamate decarboxylase, 65 kDa GAD and 67 kDa GAD, are each encoded by a single gene. Proceedings of the National Academy of Sciences of the United States of America, 89, 2115–2119.

    Article  PubMed Central  PubMed  Google Scholar 

  • Buxbaum, J. D., Silverman, J. M., Smith, C. J., Greenberg, D. A., Kilifarski, M., Reichert, J., et al. (2002). Association between a GABRB3 polymorphism and autism. Molecular Psychiatry, 7, 311–316.

    Article  PubMed  Google Scholar 

  • Casanova, M. F., van Kooten, I. A., Switala, A. E., van Engeland, H., Heinsen, H., Steinbusch, H. W., et al. (2006). Minicolumnar abnormalities in autism. Acta Neuropathologica, 112(3), 287–303.

    Article  PubMed  Google Scholar 

  • CDC. (2014). Prevalence of autism spectrum disorders among children aged 8 years—Autism and developmental disabilities monitoring network, 11 sites, United States, 2010. MMWR, 63(SS02), 1–21.

    Google Scholar 

  • Cellot, G., & Cherubini, E. (2014). GABAergic signaling as therapeutic target for autism spectrum disorders. Frontiers in Pediatrics, 8(2), 70.

    Google Scholar 

  • Chakrabarti, S., & Fombonne, E. (2005). Pervasive developmental disorders in preschool children: Confirmation of high prevalence. American Journal of Psychiatry, 162, 1133–1141.

    Article  PubMed  Google Scholar 

  • Cheh, M. A., Millonig, J. H., Roselli, L. M., Ming, X., Jacobsen, E., Kamdar, S., et al. (2006). En2 knockout mice display neurobehavioral and neurochemical alterations relevant to autism spectrum disorder. Brain Research, 1116, 166–176.

    Article  PubMed  Google Scholar 

  • Chez, M. G., Buchanan, C. P., Aimonovitch, M. C., Becker, M., Schaefer, K., Black, C., et al. (2002). Double-blind, placebo-controlled study of L-carnosine supplementation in children with autistic spectrum disorders. Journal of Child Neurology, 17, 833–837.

    Article  PubMed  Google Scholar 

  • Coghlan, S., Horder, J., Inkster, B., Mendez, M. A., Murphy, D. G., & Nutt, D. J. (2012). GABA system dysfunction in autism and related disorders: From synapse to symptoms. Neuroscience and Biobehavioral Reviews, 36(9), 2044–2055.

    Article  PubMed Central  PubMed  Google Scholar 

  • DeLorey, T. M., Sahbaie, P., Hashemi, E., Homanics, G. E., & Clark, J. D. (2008). Gabrb3 gene deficient mice exhibit impaired social and exploratory behaviors, deficits in non-selective attention and hypoplasia of cerebellar vermal lobules: A potential model of autism spectrum disorder. Behavioural Brain Research, 187, 207–220.

    Article  PubMed Central  PubMed  Google Scholar 

  • Dhossche, D., Applegate, H., Abraham, A., Maertens, P., Bland, L., Bencsath, A., et al. (2002). Elevated plasma gammaaminobutyric acid (GABA) levels in autistic youngsters: stimulus for a GABA hypothesis of autism. Medical Science Monitor, 8, R1–R6.

    Google Scholar 

  • Eftekhari, S., Mehvari Habibabadi, J., Najafi Ziarani, M., Hashemi Fesharaki, S. S., Gharakhani, M., Mostafavi, H., et al. (2013). Bumetanide reduces seizure frequency in patients with temporal lobe epilepsy. Epilepsia, 54(1), e9–e12.

    Article  PubMed  Google Scholar 

  • El-Ansary, A., & Al-Ayadhi, L. (2014). GABAergic/glutamatergic imbalance relative to excessive neuroinflammation in autism spectrum disorders. Journal of Neuroinflammation, 11(1), 189.

    Article  PubMed Central  PubMed  Google Scholar 

  • El-Ansary, A. K., Bacha, A. B., & Ayahdi, L. Y. (2011). Relationship between chronic lead toxicity and plasma neurotransmitters in autistic patients from Saudi Arabia. Clinical Biochemistry, 44(13), 1116–1120.

    Article  PubMed  Google Scholar 

  • Erickson, C. A., Early, M., Stigler, K. A., Wink, L. K., Mullett, J. E., & McDougle, C. J. (2011). An open-label naturalistic pilot study of acamprosate in youth with autistic disorder. Journal of Child and Adolescent Psychopharmacology, 21, 565–569.

    Article  PubMed Central  PubMed  Google Scholar 

  • Erickson, C. A., Mullett, J. E., & McDougle, C. J. (2010). Brief report: Acamprosate in fragile X syndrome. Journal of Autism and Developmental Disorders, 40, 1412–1416.

    Article  PubMed  Google Scholar 

  • Erickson, C. A., Veenstra-Vanderweele, J. M., Melmed, R. D., McCracken, J. T., Ginsberg, L. D., Sikich, L., et al. (2014a). STX209 (Arbaclofen) for autism spectrum disorders: An 8-week open-label study. Journal of Autism and Developmental Disorders, 44(4), 958–964.

    Article  PubMed  Google Scholar 

  • Erickson, C. A., Wink, L. K., Early, M. C., Stiegelmeyer, E., Mathieu-Frasier, L., Patrick, V., et al. (2014b). Brief report: Pilot single-blind placebo lead-in study of acamprosate in youth with autistic disorder. Journal of Autism and Developmental Disorders, 44, 981–987.

    Article  PubMed  Google Scholar 

  • Erickson, C. A., Wink, L. K., Ray, B., Early, M. C., Stiegelmeyer, E., Mathieu-Frasier, L., et al. (2013). Impact of acamprosate on behavior and brain-derived neurotrophic factor: An open-label study in youth with fragile X syndrome. Psychopharmacology (Berlin), 228, 75–84.

    Article  Google Scholar 

  • Fatemi, S. H., Folsom, T. D., Reutiman, T. J., & Thuras, P. D. (2009a). Expression of GABAB receptors is altered in brains of subjects with autism. Cerebellum, 8, 64–69.

    Article  PubMed Central  PubMed  Google Scholar 

  • Fatemi, S. H., Halt, A. R., Stary, J. M., Kanodia, R., Schulz, S. C., & Realmuto, G. R. (2002). Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in parietal and cerebellar cortices of autistic subjects. Biological Psychiatry, 52, 805–810.

    Article  PubMed  Google Scholar 

  • Fatemi, S. H., Reutiman, T. J., Folsom, T. D., Rooney, R. J., Patel, D. H., & Thuras, P. D. (2010). mRNA and protein levels for GABAAalpha4, alpha5, beta1 and GABABR1 receptors are altered in brains from subjects with autism. Journal of Autism and Developmental Disorders, 40, 743–750.

    Article  PubMed Central  PubMed  Google Scholar 

  • Fatemi, S. H., Reutiman, T. J., Folsom, T. D., Rustan, O. G., Rooney, R. J., & Thuras, P. D. (2014). Downregulation of GABAA receptor protein subunits α6, β2, δ, ε, γ2, θ, and ρ2 in the superior frontal cortex of subjects with autism. Journal of Autism and Developmental Disorders, 44(8), 1833–1845.

    Article  PubMed  Google Scholar 

  • Fatemi, S. H., Reutiman, T. J., Folsom, T. D., & Thuras, P. D. (2009b). GABA (A) receptor down regulation in brains of subjects with autism. Journal of Autism and Developmental Disorders, 39, 223–230.

    Article  PubMed Central  PubMed  Google Scholar 

  • Földy, C., Malenka, R. C., & Südhof, T. C. (2013). Autism-associated neuroligin-3 mutations commonly disrupt tonic endocannabinoid signaling. Neuron, 78, 498–509.

    Article  PubMed Central  PubMed  Google Scholar 

  • Fombonne, E., Zakarian, R., Bennett, A., Meng, L., & McLean-Heywood, D. (2006). Pervasive developmental disorders in Montreal, Quebec, Canada: Prevalence and links with immunizations. Pediatrics, 118, e139–e150.

    Article  PubMed  Google Scholar 

  • Frizzo, M. E., Dall’Onder, L. P., Dalcin, K. B., & Souza, D. O. (2004). Riluzole enhances glutamate uptake in rat astrocyte cultures. Cellular and Molecular Neurobiology, 24(1), 123–128.

    Article  PubMed  Google Scholar 

  • Ghaleiha, A., Mohammadi, E., Mohammadi, M. R., Farokhnia, M., Modabbernia, A., Yekehtaz, H., et al. (2013). Riluzole as an adjunctive therapy to risperidone for the treatment of irritability in children with autistic disorder: A double-blind, placebo-controlled, randomized trial. Paediatric Drugs, 15(6), 505–514.

    Article  PubMed  Google Scholar 

  • Guptill, J. T., Booker, A. B., Gibbs, T. T., Kemper, T. L., Bauman, M. L., & Blatt, G. J. (2007). [3H]-flunitrazepam-labeled benzodiazepine binding sites in the hippocampal formation in autism: A multiple concentration autoradiographic study. Journal of Autism and Developmental Disorders, 37, 911–920.

    Article  PubMed  Google Scholar 

  • Hadjikhani, N., Zürcher, N. R., Rogier, O., Ruest, T., Hippolyte, L., Ben-Ari, Y., et al. (2015). Improving emotional face perception in autism with diuretic bumetanide: A proof-of-concept behavioral and functional brain imaging pilot study. Autism, 19(2), 149–157.

    Article  PubMed  Google Scholar 

  • Harada, M., Taki, M. M., Nose, A., Kubo, H., Mori, K., Nishitani, H., et al. (2011). Non-invasive evaluation of the GABAergic/glutamatergic system in autistic patients observed by MEGA-editing proton MR spectroscopy using a clinical 3 Tesla instrument. Journal of Autism and Developmental Disorders, 41, 447–454.

    Article  PubMed  Google Scholar 

  • He, Y., Benz, A., Fu, T., Wang, M., Covey, D. F., Zorumski, C. F., et al. (2002). Neuroprotective agent riluzole potentiates postsynaptic GABA(A) receptor function. Neuropharmacology, 42(2), 199–209.

    Article  PubMed  Google Scholar 

  • Hellings, J. A., Weckbaugh, M., Nickel, E. J., Cain, S. E., Zarcone, J. R., Reese, R. M., et al. (2005). A double-blind, placebo-controlled study of valproate for aggression in youth with pervasive developmental disorders. J Child Adolesc Psychopharmacol, 15(4), 682–692.

    Article  PubMed  Google Scholar 

  • Henderson, C., Wijetunge, L., Kinoshita, M. N., Shumway, M., Hammond, R. S., Postma, F. R., et al. (2012). Reversal of disease-related pathologies in the fragile X mouse model by selective activation of GABAB receptors with arbaclofen. Science Translational Medicine, 4(152), 152ra128.

    Article  PubMed  Google Scholar 

  • Higgins, J. P. T., & Green, S. (Eds.). (2011). Cochrane handbook for systematic reviews of interventions version 5.1.0 [updated March 2011]. The Cochrane Collaboration.

  • Hogart, A., Nagarajan, R. P., Patzel, K. A., Yasui, D. H., & Lasalle, J. M. (2007). 15q11-13 GABAA receptor genes are normally biallelically expressed in brain yet are subject to epigenetic dysregulation in autism-spectrum disorders. Human Molecular Genetics, 16, 691–703.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hollander, E., Chaplin, W., Soorya, L., Wasserman, S., Novotny, S., Rusoff, J., et al. (2010). Divalproex sodium vs placebo for the treatment of irritability in children and adolescents with autism spectrum disorders. Neuropsychopharmacology, 35, 990–998.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hollander, E., Soorya, L., Wasserman, S., Esposito, K., Chaplin, W., & Anagnostou, E. (2006). Divalproex sodium vs. placebo in the treatment of repetitive behaviours in autism spectrum disorder. International Journal of Neuropsychopharmacology, 9, 209–213.

    Article  PubMed  Google Scholar 

  • Hussman, J. P. (2001). Suppressed GABAergic inhibition as a common factor in suspected etiologies of autism. Journal of Autism and Developmental Disorders, 31, 247–248.

    Article  PubMed  Google Scholar 

  • Kalk, N. J., & Lingford-Hughes, A. R. (2014). The clinical pharmacology of acamprosate. British Journal of Clinical Pharmacology, 77(2), 315–323.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kaupmann, K., Schuler, V., Mosbacher, J., Bischoff, S., Bittiger, H., Heid, J., et al. (1998). Human γ-aminobutyric acid type B receptors are differentially expressed and regulate inwardly rectifying K+ channels. Proceedings of the National Academy of Sciences of the United States of America, 95, 14991–14996.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim, H. L., Donnelly, J. H., Tournay, A. E., Book, T. M., & Filipek, P. (2006a). Absence of seizures despite high prevalence of epileptiform EEG abnormalities in children with autism monitored in a tertiary care center. Epilepsia, 47(2), 394–398.

    Article  PubMed  Google Scholar 

  • Kim, S. A., Kim, J. H., Park, M., Cho, I. H., & Yoo, H. J. (2006b). Association of GABRB3 polymorphisms with autism spectrum disorders in Korean trios. Neuropsychobiology, 54, 160–165.

    Article  PubMed  Google Scholar 

  • Kuriyama, K., Hirouchi, M., & Kimura, H. (2000). Neurochemical and molecular pharmacological aspects of the GABA(B) receptor. Neurochemical Research, 25, 1233–1239.

    Article  PubMed  Google Scholar 

  • Lal, R., Sukbuntherng, J., Tai, E. H., Upadhyay, S., Yao, F., Warren, M. S., et al. (2009). Arbaclofen placarbil, a novel R-baclofen prodrug: improved absorption, distribution, metabolism, and elimination properties compared with R-baclofen. Journal of Pharmacology and Experimental Therapeutics, 330(3), 911–921.

    Article  PubMed  Google Scholar 

  • Lawrence, Y. A., Kemper, T. L., Bauman, M. L., & Blatt, G. J. (2010). Parvalbumin-, calbindin-, and calretinin-immunoreactive hippocampal interneuron density in autism. Acta Neurologica Scandinavica, 121, 99–108.

    Article  PubMed  Google Scholar 

  • Lemonnier, E., & Ben-Ari, Y. (2010). The diuretic bumetanide decreases autistic behaviour in five infants treated during 3 months with no side effects. Acta Paediatrica, 99, 1885–1888.

    Article  PubMed  Google Scholar 

  • Lemonnier, E., Degrez, C., Phelep, M., Tyzio, R., Josse, F., Grandgeorge, M., et al. (2012). A randomised controlled trial of bumetanide in the treatment of autism in children. Translational Psychiatry, 2, e202.

    Article  PubMed Central  PubMed  Google Scholar 

  • Levy, S. E., Mandell, D. S., & Schultz, R. T. (2009). Autism. The Lancet, 374, 1627–1638.

    Article  Google Scholar 

  • Löscher, W. (1981). Effect of inhibitors of GABA aminotransferase on the metabolism of GABA in brain tissue and synaptosomal fractions. Journal of Neurochemistry Research, 36, 1521–1527.

    Article  Google Scholar 

  • Löscher, W. (2002). Basic pharmacology of valproate: A review after 35 years of clinical use for the treatment of epilepsy. CNS Drugs, 16(10), 669–694.

    Article  PubMed  Google Scholar 

  • Ma, D. Q., Whitehead, P. L., Menold, M. M., Martin, E. R., Ashley-Koch, A. E., Mei, H., et al. (2005). Identification of significant association and gene–gene interaction of GABA receptor subunit genes in autism. American Journal of Human Genetics, 77, 377–388.

    Article  PubMed Central  PubMed  Google Scholar 

  • Martin, D., Thompson, M. A., & Nadler, J. V. (1993). The neuroprotective agent riluzole inhibits release of glutamate and aspartate from slices of hippocampal area CA1. European Journal of Pharmacology, 250(3), 473–476.

    Article  PubMed  Google Scholar 

  • Mendez, M. A., Horder, J., Myers, J., Coghlan, S., Stokes, P., Erritzoe, D., et al. (2013). The brain GABA-benzodiazepine receptor alpha-5 subtype in autism spectrum disorder: a pilot [(11)C]Ro15-4513 positron emission tomography study. Neuropharmacology, 68, 195–201.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mori, T., Mori, K., Fujii, E., Toda, Y., Miyazaki, M., Harada, M., et al. (2012). Evaluation of the GABAergic nervous system in autistic brain: (123)I-iomazenil SPECT study. Brain Development, 34, 648–654.

    Article  PubMed  Google Scholar 

  • Mott, D. D., & Lewis, D. V. (1994). The pharmacology and function of central GABAB receptors. International Review of Neurobiology, 36, 97–223.

    Article  PubMed  Google Scholar 

  • NCT01288716. http://www.clinicaltrials.gov/ct2/show/NCT01288716

  • NCT01706523. http://www.clinicaltrials.gov/ct2/show/NCT01706523

  • NCT01813318. http://www.clinicaltrials.gov/ct2/show/NCT01813318

  • NCT01966679.https://www.clinicaltrials.gov/ct2/show/NCT01966679

  • NCT02094651. http://www.clinicaltrials.gov/ct2/show/NCT02094651

  • Nutt, D. J., & Malizia, A. L. (2001). New insights into the role of the GABA(A)-benzodiazepine receptor in psychiatric disorder. British Journal of Psychiatry, 179, 390–396.

    Article  PubMed  Google Scholar 

  • Oblak, A., Gibbs, T. T., & Blatt, G. J. (2009). Decreased GABAA receptors and benzodiazepine binding sites in the anterior cingulate cortex in autism. Autism Research, 2, 205–219.

    Article  PubMed Central  PubMed  Google Scholar 

  • Pizzarelli, R., & Cherubini, E. (2013). Developmental regulation of GABAergic signalling in the hippocampus of neuroligin 3 R451C knock-in mice: an animal model of autism. Frontiers in Cellular Neuroscience, 4(7), 85.

    Google Scholar 

  • Rimvall, K., & Martin, D. L. (1994). The level of GAD67 protein is highly sensitive to small increases in intraneuronal γ-aminobutyric acid levels. Journal of Neurochemistry, 62, 1375–1381.

    Article  PubMed  Google Scholar 

  • Ritvo, E. R., Freeman, B. J., Scheibel, A. B., Duong, T., Robinson, H., Guthrie, D., et al. (1986). Lower Purkinje cell counts in the cerebella of four autistic subjects: initial findings of the UCLANSAC autopsy research report. American Journal of Psychiatry, 146, 862–866.

    Google Scholar 

  • Rojas, D. C., Singel, D., Steinmetzm, S., Hepburn, S., & Brown, M. S. (2014). Decreased left perisylvian GABA concentration in children with autism and unaffected siblings. Neuroimage, 86, 28–34.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rolf, L. H., Haarmann, F. Y., Grotemeyer, K. H., & Kehrer, H. (1993). Serotonin and amino acid content in platelets of autistic children. Acta Psychiatrica Scandinavica, 87, 312–316.

    Article  PubMed  Google Scholar 

  • Russo, A. J. (2013). Correlation between hepatocyte growth factor (HGF) and gamma-aminobutyric acid (GABA) plasma levels in autistic children. Biomark Insights, 12(8), 69–75.

    Article  Google Scholar 

  • Sawaya, M. C. B., Horton, R. W., & Meldrun, B. S. (1975). Effects of anticonvulsant drugs on the cerebral enzymes metabolizing GABA. Epilepsia, 16, 649–655.

    Article  PubMed  Google Scholar 

  • Sgadò, P., Genovesi, S., Kalinovsky, A., Zunino, G., Macchi, F., Allegra, M., et al. (2013). Loss of GABAergic neurons in the hippocampus and cerebral cortex of engrailed-2 null mutant mice: Implications for autism spectrum disorders. Experimental Neurology, 247, 496–505.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sieghart, W., & Sperk, G. (2002). Subunit composition, distribution and function of GABA(A) receptor subtypes. Current Topics in Medicinal Chemistry, 2, 795–816.

    Article  PubMed  Google Scholar 

  • Stell, B. M., Brickley, S. G., Tang, C. Y., Farrant, M., & Mody, I. (2003). Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by delta subunit-containing GABAA receptors. Proceedings of the National Academy of Sciences of the United States of America, 100(24), 14439–14444.

    Article  PubMed Central  PubMed  Google Scholar 

  • Tabuchi, K., Blundell, J., Etherton, M. R., Hammer, R. E., Liu, X., Powell, C. M., et al. (2007). A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science, 318, 71–76.

    Article  PubMed Central  PubMed  Google Scholar 

  • Trombley, P. Q., Horning, M. S., & Blakemore, L. J. (1998). Carnosine modulates zinc and copper effects on amino acid receptors and synaptic transmission. NeuroReport, 9(15), 3503–3507.

    Article  PubMed  Google Scholar 

  • Tuchman, R., & Rapin, I. (2002). Epilepsy in autism. Lancet Neurology, 1(6), 352–358.

    Article  PubMed  Google Scholar 

  • van Kooten, I. A., Palmen, S. J., von Cappeln, P., Steinbusch, H. W., Korr, H., Heinsen, H., et al. (2008). Neurons in the fusiform gyrus are fewer and smaller in autism. Brain, 131, 987–999.

    Article  PubMed  Google Scholar 

  • Veenstra-VanderWeele, J., Sikich, L., Melmed, R., von Hehn, J. S., Walton-Bowen, K. L., & Kuriyama, N. et al. (2013). Randomized, controlled, phase 2 trial of STX209 for social function in ASD. Abstract presented at the IMFAR meeting 2013.

  • Weiss, M., Tikhonov, D., & Buldakova, S. (2002). Effect of flumazenil on GABAA receptors in isolated rat hippocampal neurons. Neurochemical Research, 7(12), 1605–1612.

    Article  Google Scholar 

  • Wolpert, C. M., Menold, M. M., Bass, M. P., Qumsiyeh, M. B., Donnelly, S. L., Ravan, S. A., et al. (2000). Three probands with autistic disorder and isodicentric chromosome 15. American Journal of Medical Genetics, 96, 365–372.

    Article  PubMed  Google Scholar 

  • Wray, J. A., Yoon, J. H., Vollmer, T., & Mauk, J. (2000). Pilot study of the behavioral effects of flumazenil in two children with autism. Journal of Autism and Developmental Disorders, 30, 619–620.

    Article  PubMed  Google Scholar 

  • Yip, J., Soghomonian, J. J., & Blatt, G. J. (2007). Decreased GAD67 mRNA levels in cerebellar Purkinje cells in autism: Pathophysiological implications. Acta Neuropathologica, 113, 559–568.

    Article  PubMed  Google Scholar 

  • Yip, J., Soghomonian, J. J., & Blatt, G. J. (2009). Decreased GAD65 mRNA levels in select subpopulations of neurons in the cerebellar dentate nuclei in autism: An in situ hybridization study. Autism Research, 2, 50–59.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author contributions

NB conceived of the study, participated in its design and coordination and drafted the manuscript; LF participated in the design and coordination of the study and drafted the manuscript; CP participated in the design of the study and helped to draft the manuscript; SD participated in the design of the study and helped to draft the manuscript; FB participated in the design and coordination of the study and helped to draft the manuscript; PP conceived of the study, and participated in its design and coordination and helped to draft the manuscript. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natascia Brondino.

Ethics declarations

Conflict of interest

All authors declared that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brondino, N., Fusar-Poli, L., Panisi, C. et al. Pharmacological Modulation of GABA Function in Autism Spectrum Disorders: A Systematic Review of Human Studies. J Autism Dev Disord 46, 825–839 (2016). https://doi.org/10.1007/s10803-015-2619-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10803-015-2619-y

Keywords

Navigation