Skip to main content
Log in

Investigation of Thermal Properties of High-Density Polyethylene/Aluminum Nanocomposites by Photothermal Infrared Radiometry

  • CPPTA3
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this study, thermal properties of high-density polyethylene (HDPE) filled with nanosized Al particles (80 nm) were investigated. Samples were prepared using melt mixing method up to filler volume fraction of 29 %, followed by compression molding. By using modulated photothermal radiometry (PTR) technique, thermal diffusivity and thermal effusivity were obtained. The effective thermal conductivity of nanocomposites was calculated directly from PTR measurements and from the measurements of density, specific heat capacity (by differential scanning calorimetry) and thermal diffusivity (obtained from PTR signal amplitude and phase). It is concluded that the thermal conductivity of HDPE composites increases with increasing Al fraction and the highest effective thermal conductivity enhancement of 205 % is achieved at a filler volume fraction of 29 %. The obtained results were compared with the theoretical models and experimental data given in the literature. The results demonstrate that Agari and Uno, and Cheng and Vachon models can predict well the thermal conductivity of HDPE/Al nanocomposites in the whole range of Al fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. I.H. Tavman, J. Appl. Polym. Sci. 62, 2161–2167 (1996)

    Article  Google Scholar 

  2. Y.P. Mamunya, V.V. Davydenko, P. Pissis, E.V. Lebedev, Eur. Polym. J. 38, 1887–1897 (2002)

    Article  Google Scholar 

  3. W. Zhou, D. Yu, J. Mater. Sci. 48, 7960–7968 (2013)

    Article  ADS  Google Scholar 

  4. V. Chifor, Z. Tekiner, M. Turker, R. Orban, J. Zhejiang Univ. Sci. A 12, 583–592 (2011)

    Article  Google Scholar 

  5. J.K. Carson, M. Noureldin, Int. Commun. Heat Mass Transf. 36, 458–461 (2009)

    Article  Google Scholar 

  6. A. Ramezani Kakroodi, Y. Kazemi, D. Rodrigue, Polym. Adv. Technol. 26, 362–368 (2015)

    Article  Google Scholar 

  7. W. Zhou, Polym. Eng. Sci. 51, 917–924 (2011)

    Article  Google Scholar 

  8. N. Horny, Y. Kanake, M. Chirtoc, L. Tighzert, Polym. Degrad. Stab. 127, 105–112 (2016)

    Article  Google Scholar 

  9. G. Lee, M. Park, J. Kim, J.I. Lee, H.G. Yoon, Compos. A Appl. Sci. Manuf. 37, 727–734 (2006)

    Article  Google Scholar 

  10. X. Li, L.G. Tabil, I.N. Oguocha, S. Panigrahi, Compos. Sci. Technol. 68, 1753–1758 (2008)

    Article  Google Scholar 

  11. M. Chirtoc, N. Horny, I.H. Tavman, A. Turgut, I. Kökey, M. Omastová, Int. J. Therm. Sci. 62, 50–55 (2012)

    Article  Google Scholar 

  12. T. Evgin, H.D. Koca, N. Horny, A. Turgut, I.H. Tavman, M. Chirtoc, M. Omastová, I. Novak, Compos. A Appl. Sci. Manuf. 82, 208–213 (2016)

    Article  Google Scholar 

  13. M. Chirtoc, in Ch 2, Thermal Wave Physics and Related Photothermal Techniques: Basic Principles and Recent Developments, ed. by E. Marin (Transworld Research Network, Trivandrum, 2009), pp. 29–57

  14. M. Chirtoc, N. Horny, I.H. Tavman, A. Turgut, in Ch 11, Spectroscopy of Polymer Nanocomposites, ed. by S. Thomas, D. Rouxel, D. Ponnamma (Elsevier, Amsterdam, 2016), pp. 312–361

  15. I. H. Tavman, T. Evgin, in IEEE 21st International Symposium for Design and Technology in Electronic Packaging (SIITME, 2015), pp. 31–35 (2015)

  16. J.C. Maxwell, A Treatise on Electricity and Magnetism, 3rd edn. (Dover, New York, 1954)

    MATH  Google Scholar 

  17. R. Landauer, J. Appl. Phys. 23, 779–84 (1952)

    Article  ADS  Google Scholar 

  18. Y. Agari, T. Uno, J. Appl. Polym. Sci. 32, 5705–12 (1986)

    Article  Google Scholar 

  19. S.C. Cheng, R.I. Vachon, Int. J. Heat Mass Transf. 13, 537 (1970)

    Article  Google Scholar 

  20. T.K. Dey, M. Tripathi, Thermochim. Acta 502, 35–42 (2010)

    Article  Google Scholar 

  21. J.S. Kim, M. Hong, S. Kwak, Y. Seo, Phys. Chem. Chem. Phys. 11, 10851–10859 (2009)

    Article  Google Scholar 

  22. H. Chen, V.V. Ginzburg, J. Yang, Y. Yang, W. Liu, Y. Huang, L. Du, B. Chen, Prog. Polym. Sci. 59, 41–85 (2016)

    Article  Google Scholar 

  23. N. Burger, A. Laachachi, M. Ferriol, M. Lutz, V. Toniazzo, D. Ruch, Prog. Polym. Sci. 61, 1–28 (2016)

    Article  Google Scholar 

  24. M. Bhattacharya, Materials 9, 262–297 (2016)

    Article  ADS  Google Scholar 

  25. M.X. Shen, Y.X. Cui, J. He, Y.M. Zhang, Int. J. Miner. Metall. Mater. 18, 623–631 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Turgut.

Additional information

Selected papers from Third Conference on Photoacoustic and Photothermal Theory and Applications.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koca, H.D., Evgin, T., Horny, N. et al. Investigation of Thermal Properties of High-Density Polyethylene/Aluminum Nanocomposites by Photothermal Infrared Radiometry. Int J Thermophys 38, 181 (2017). https://doi.org/10.1007/s10765-017-2314-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-017-2314-7

Keywords

Navigation