Skip to main content

Advertisement

Log in

Expression of miRNA-155, miRNA-223, miRNA-31, miRNA-21, miRNA-125b, and miRNA-146a in the Inflammatory Pathway of Hidradenitis Suppurativa

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Hidradenitis suppurativa (HS) has been associated with marked inflammatory perturbation. The mechanisms regulating the inflammatory network remain elusive. microRNAs (miRNAs) have been described as gene regulators of inflammation. We evaluated the messenger RNA (mRNA) expression levels of six selected inflammation-related miRNAs in lesional and perilesional skin samples of HS patients and in healthy controls. Samples of 15 HS patients and 10 healthy controls were included in this prospective study. Expression levels of the miRNAs miRNA-155-5p, miRNA-223-5p, miRNA-31-5p, miRNA-21-5p, miRNA-125b-5p, and miRNA-146a-5p were studied by quantitative real-time reverse transcription polymerase chain reaction. We observed a significant overexpression of miRNA-155-5p, miRNA-223-5p, miRNA-31-5p, miRNA-21-5p, and miRNA-146a-5p in lesional HS skin compared to healthy controls. Expression of these miRNAs was also significantly increased in lesional HS skin when compared to perilesional skin. Only miRNA-155-5p showed an increased expression in perilesional skin compared to healthy controls. In contrast, miRNA-125b-5p had a significantly lower expression in lesional HS skin compared to perilesional skin. We found that the studied inflammation-related miRNAs were significantly dysregulated in lesional HS skin and may have regulatory roles in the inflammatory process of HS. Given their predicted targets and functions, our findings point to these miRNAs as potential disease biomarkers, and manipulation might be used therapeutically to target the inflammatory pathway in HS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

HS:

Hidradenitis suppurativa

miRNA:

microRNA

mRNA:

Messenger RNA

TNF-α:

Tumor necrosis factor-α

IL:

Interleukin

qRT-PCR:

Quantitative real-time reverse transcription polymerase chain reaction

SHIP-1:

Src homology 2-containing inositol phosphatase-1

TLR:

Toll-like receptor

TH:

T helper

FGFR2:

Fibroblast growth factor receptor 2

LPS:

Lipopolysaccharide

IRAK-1:

IL-1 receptor-associated kinase 1

TRAF-6:

TNF receptor-associated factor 6

STK40:

Serine/threonine kinase 40

REFERENCES

  1. Kirschke, J., S. Hessam, and F.G. Bechara. 2015. Hidradenitis suppurativa/acne inversa: An update. Der Hautarzt 66: 413–422. doi:10.1007/s00105-015-3616-y.

    Article  CAS  Google Scholar 

  2. Janse, I.C., J.L. Blok, G.F.H. Diercks, B. Horváth, and M.F. Jonkman. 2016. Hidradenitis suppurativa: A disease of infundibular epidermis, rather than pilosebaceous units? The British Journal of Dermatology. doi:10.1111/bjd.14992.

    Google Scholar 

  3. Sellheyer, K., and D. Krahl. 2005. “Hidradenitis suppurativa” is acne inversa! An appeal to (finally) abandon a misnomer. International Journal of Dermatology 44: 535–40. doi:10.1111/j.1365-4632.2004.02536.x.

    Article  PubMed  Google Scholar 

  4. van der Zee, H.H., J.D. Laman, J. Boer, and E.P. Prens. 2012. Hidradenitis suppurativa: viewpoint on clinical phenotyping, pathogenesis and novel treatments. Experimental Dermatology 21: 735–9. doi:10.1111/j.1600-0625.2012.01552.x.

    Article  PubMed  Google Scholar 

  5. Hessam, S., M. Sand, T. Gambichler, and F.G. Bechara. 2015. Correlation of inflammatory serum markers with disease severity in patients with hidradenitis suppurativa (HS). Journal of the American Academy of Dermatology 73: 998–1005. doi:10.1016/j.jaad.2015.08.052.

    Article  CAS  PubMed  Google Scholar 

  6. Kurzen, H., I. Kurokawa, G.B.E. Jemec, L. Emtestam, K. Sellheyer, E.J. Giamarellos-Bourboulis, I. Nagy, et al. 2008. What causes hidradenitis suppurativa? Experimental Dermatology 17: 455–456. doi:10.1111/j.1600-0625.2008.00712_1.x. discussion 457–472.

    Article  CAS  PubMed  Google Scholar 

  7. Bartel, D.P. 2009. MicroRNAs: target recognition and regulatory functions. Cell 136: 215–233. doi:10.1016/j.cell.2009.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sand, M.D.S., P. Altmeyer, and F.G. Bechara. 2012. MicroRNA in non-melanoma skin cancer. Cancer Biomark 11: 253–7. doi:10.3233/cbm-2012-0274. 23248183.

    Article  CAS  PubMed  Google Scholar 

  9. Sand, M., T. Gambichler, D. Sand, M. Skrygan, P. Altmeyer, and F.G. Bechara. 2009. MicroRNAs and the skin: tiny players in the body’s largest organ. Journal of Dermatological Science 53: 169–175. doi:10.1016/j.jdermsci.2008.10.004.

    Article  CAS  PubMed  Google Scholar 

  10. Sonkoly, E., and A. Pivarcsi. 2009. microRNAs in inflammation. International Reviews of Immunology 28: 535–561. doi:10.3109/08830180903208303.

    Article  CAS  PubMed  Google Scholar 

  11. Sonkoly, E., T. Wei, P.C. Janson, A. Sääf, L. Lundeberg, M. Tengvall-Linder, G. Norstedt, et al. 2007. MicroRNAs: novel regulators involved in the pathogenesis of psoriasis? PloS One 2: e610. doi:10.1371/journal.pone.0000610.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hessam, S., M. Sand, M. Skrygan, T. Gambichler, and F.G. Bechara. 2016. Inflammation induced changes in the expression levels of components of the microRNA maturation machinery Drosha, Dicer, Drosha co-factor DGRC8 and Exportin-5 in inflammatory lesions of hidradenitis suppurativa patients. Journal of Dermatological Science. doi:10.1016/j.jdermsci.2016.02.009.

    Google Scholar 

  13. Xia, J., and W. Zhang. 2014. MicroRNAs in normal and psoriatic skin. Physiological Genomics 46: 113–122. doi:10.1152/physiolgenomics.00157.2013.

    Article  CAS  PubMed  Google Scholar 

  14. Meisgen, F., N. Xu, T. Wei, P.C. Janson, S. Obad, O. Broom, N. Nagy, et al. 2012. MiR-21 is up-regulated in psoriasis and suppresses T cell apoptosis. Experimental Dermatology 21: 312–314. doi:10.1111/j.1600-0625.2012.01462.x.

    Article  CAS  PubMed  Google Scholar 

  15. Xu, N., F. Meisgen, L.M. Butler, G. Han, X.-J. Wang, C. Söderberg-Nauclér, M. Ståhle, A. Pivarcsi, and E. Sonkoly. 2013. MicroRNA-31 is overexpressed in psoriasis and modulates inflammatory cytokine and chemokine production in keratinocytes via targeting serine/threonine kinase 40. Journal of Immunology (Baltimore, Md.: 1950) 190: 678–688. doi:10.4049/jimmunol.1202695.

    Article  CAS  Google Scholar 

  16. Xu, N., P. Brodin, T. Wei, F. Meisgen, L. Eidsmo, N. Nagy, L. Kemeny, M. Ståhle, E. Sonkoly, and A. Pivarcsi. 2011. MiR-125b, a microRNA downregulated in psoriasis, modulates keratinocyte proliferation by targeting FGFR2. The Journal of Investigative Dermatology 131: 1521–1529. doi:10.1038/jid.2011.55.

    Article  CAS  PubMed  Google Scholar 

  17. Kimball, A.B., M.M. Okun, D.A. Williams, A.B. Gottlieb, K.A. Papp, C.C. Zouboulis, A.W. Armstrong, et al. 2016. Two Phase 3 Trials of Adalimumab for Hidradenitis Suppurativa. The New England Journal of Medicine 375: 422–434. doi:10.1056/NEJMoa1504370.

    Article  CAS  PubMed  Google Scholar 

  18. Tili, E., J.-J. Michaille, A. Cimino, S. Costinean, C.D. Dumitru, B. Adair, M. Fabbri, et al. 2007. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. Journal of immunology (Baltimore, Md.: 1950) 179: 5082–5089.

    Article  CAS  Google Scholar 

  19. Taganov, K.D., M.P. Boldin, K.-J. Chang, and D. Baltimore. 2006. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proceedings of the National Academy of Sciences of the United States of America 103: 12481–12486. doi:10.1073/pnas.0605298103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lima, A.L., I. Karl, T. Giner, H. Poppe, M. Schmidt, D. Presser, M. Goebeler, and B. Bauer. 2016. Keratinocytes and neutrophils are important sources of proinflammatory molecules in hidradenitis suppurativa. The British Journal of Dermatology 174: 514–521. doi:10.1111/bjd.14214.

    Article  CAS  PubMed  Google Scholar 

  21. van der Zee, H.H., L. de Ruiter, J. Boer, D.G. van den Broecke, J.C. den Hollander, J.D. Laman, and E.P. Prens. 2012. Alterations in leucocyte subsets and histomorphology in normal-appearing perilesional skin and early and chronic hidradenitis suppurativa lesions. The British Journal of Dermatology 166: 98–106. doi:10.1111/j.1365-2133.2011.10643.x.

    Article  PubMed  Google Scholar 

  22. Ward, J.R., P.R. Heath, J.W. Catto, M.K.B. Whyte, M. Milo, and S.A. Renshaw. 2011. Regulation of neutrophil senescence by microRNAs. PloS One 6: e15810. doi:10.1371/journal.pone.0015810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Johnnidis, J.B., M.H. Harris, R.T. Wheeler, S. Stehling-Sun, M.H. Lam, O. Kirak, T.R. Brummelkamp, M.D. Fleming, and F.D. Camargo. 2008. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 451: 1125–1129. doi:10.1038/nature06607.

    Article  CAS  PubMed  Google Scholar 

  24. Cheng, Z., L. Yan, W. Lin, W. Jiang, Y. Zhang, J. Xi, L. Chen, et al. 2014. Identification of reference miRNAs in human tumors by TCGA miRNA-seq data. Biochemical and Biophysical Research Communications 453: 375–378. doi:10.1016/j.bbrc.2014.09.086.

    Article  Google Scholar 

  25. Peltier, H.J., and G.J. Latham. 2008. Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA (New York, N.Y.) 14: 844–852. doi:10.1261/rna.939908.

    Article  CAS  Google Scholar 

  26. Livak, K.J., and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods (San Diego, Calif.) 25: 402–408. doi:10.1006/meth.2001.1262.

    Article  CAS  Google Scholar 

  27. Kurowska-Stolarska, M., S. Alivernini, L.E. Ballantine, D.L. Asquith, N.L. Millar, D.S. Gilchrist, J. Reilly, et al. 2011. MicroRNA-155 as a proinflammatory regulator in clinical and experimental arthritis. Proceedings of the National Academy of Sciences of the United States of America 108: 11193–11198. doi:10.1073/pnas.1019536108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Emelianov, V.U., F.G. Bechara, R. Gläser, E.A. Langan, W.M. Taungjaruwinai, J.M. Schröder, K.C. Meyer, and R. Paus. 2012. Immunohistological pointers to a possible role for excessive cathelicidin (LL-37) expression by apocrine sweat glands in the pathogenesis of hidradenitis suppurativa/acne inversa. The British Journal of Dermatology 166: 1023–1034. doi:10.1111/j.1365-2133.2011.10765.x.

    Article  CAS  PubMed  Google Scholar 

  29. van der Zee, H.H., L. de Ruiter, D.G. van den Broecke, W.A. Dik, J.D. Laman, and E.P. Prens. 2011. Elevated levels of tumour necrosis factor (TNF)-α, interleukin (IL)-1β and IL-10 in hidradenitis suppurativa skin: a rationale for targeting TNF-α and IL-1β. The British Journal of Dermatology 164: 1292–1298. doi:10.1111/j.1365-2133.2011.10254.x.

    Article  PubMed  Google Scholar 

  30. van der Zee, H.H., J.D. Laman, L. de Ruiter, W.A. Dik, and E.P. Prens. 2012. Adalimumab (antitumour necrosis factor-α) treatment of hidradenitis suppurativa ameliorates skin inflammation: an in situ and ex vivo study. The British Journal of Dermatology 166: 298–305. doi:10.1111/j.1365-2133.2011.10698.x.

    Article  PubMed  Google Scholar 

  31. Gulliver, W., C.C. Zouboulis, E. Prens, G.B.E. Jemec, and T. Tzellos. 2016. Evidence-based approach to the treatment of hidradenitis suppurativa/acne inversa, based on the European guidelines for hidradenitis suppurativa. Reviews in Endocrine & Metabolic Disorders. doi:10.1007/s11154-016-9328-5.

    Google Scholar 

  32. Sonkoly, E., P. Janson, M.-L. Majuri, T. Savinko, N. Fyhrquist, L. Eidsmo, N. Xu, et al. 2010. MiR-155 is overexpressed in patients with atopic dermatitis and modulates T-cell proliferative responses by targeting cytotoxic T lymphocyte-associated antigen 4. The Journal of Allergy and Clinical Immunology 126: 581–589.e1–20. doi:10.1016/j.jaci.2010.05.045.

    Article  CAS  PubMed  Google Scholar 

  33. Schlapbach, C., T. Hänni, N. Yawalkar, and R.E. Hunger. 2011. Expression of the IL-23/Th17 pathway in lesions of hidradenitis suppurativa. Journal of the American Academy of Dermatology 65: 790–8. doi:10.1016/j.jaad.2010.07.010.

    Article  CAS  PubMed  Google Scholar 

  34. Kelly, G., R. Hughes, T. McGarry, M. van den Born, K. Adamzik, R. Fitzgerald, C. Lawlor, A.M. Tobin, C.M. Sweeney, and B. Kirby. 2015. Dysregulated cytokine expression in lesional and nonlesional skin in hidradenitis suppurativa. The British Journal of Dermatology 173: 1431–1439. doi:10.1111/bjd.14075.

    Article  CAS  PubMed  Google Scholar 

  35. Hunger, R.E., A.M. Surovy, A.S. Hassan, L.R. Braathen, and N. Yawalkar. 2008. Toll-like receptor 2 is highly expressed in lesions of acne inversa and colocalizes with C-type lectin receptor. The British Journal of Dermatology 158: 691–697. doi:10.1111/j.1365-2133.2007.08425.x.

    Article  CAS  PubMed  Google Scholar 

  36. Piccinini, A. M., and K. S. Midwood. 2010. DAMPening inflammation by modulating TLR signalling. Mediators of Inflammation 2010. doi:10.1155/2010/672395.

  37. Hessam, S., M. Sand, D. Georgas, A. Anders, and F.G. Bechara. 2016. Microbial Profile and Antimicrobial Susceptibility of Bacteria Found in Inflammatory Hidradenitis Suppurativa Lesions. Skin Pharmacology and Physiology 29: 161–167. doi:10.1159/000446812.

    Article  CAS  PubMed  Google Scholar 

  38. Sonkoly, E., M. Ståhle, and A. Pivarcsi. 2008. MicroRNAs: novel regulators in skin inflammation. Clinical and Experimental Dermatology 33: 312–315. doi:10.1111/j.1365-2230.2008.02804.x.

    Article  CAS  PubMed  Google Scholar 

  39. Hotz, C., M. Boniotto, A. Guguin, M. Surenaud, F. Jean-Louis, P. Tisserand, N. Ortonne, et al. 2016. Intrinsic Defect in Keratinocyte Function Leads to Inflammation in Hidradenitis Suppurativa. Journal of Investigative Dermatology 136: 1768–1780. doi:10.1016/j.jid.2016.04.036.

    Article  CAS  PubMed  Google Scholar 

  40. Tzanetakou, V., T. Kanni, S. Giatrakou, A. Katoulis, E. Papadavid, M.G. Netea, C.A. Dinarello, J.W.M. van der Meer, D. Rigopoulos, and E.J. Giamarellos-Bourboulis. 2016. Safety and Efficacy of Anakinra in Severe Hidradenitis Suppurativa: A Randomized Clinical Trial. JAMA Dermatology 152: 52–59. doi:10.1001/jamadermatol.2015.3903.

    Article  PubMed  Google Scholar 

  41. Guinea-Viniegra, J., M. Jiménez, H.B. Schonthaler, R. Navarro, Y. Delgado, M.J. Concha-Garzón, E. Tschachler, S. Obad, E. Daudén, and E.F. Wagner. 2014. Targeting miR-21 to treat psoriasis. Science Translational Medicine 6: 225re1. doi:10.1126/scitranslmed.3008089.

    Article  PubMed  Google Scholar 

  42. Murugaiyan, Gopal, A.P. da Cunha, A.K. Ajay, N. Joller, L.P. Garo, S. Kumaradevan, N. Yosef, V.S. Vaidya, and H.L. Weiner. 2015. MicroRNA-21 promotes Th17 differentiation and mediates experimental autoimmune encephalomyelitis. The Journal of Clinical Investigation 125: 1069–1080. doi:10.1172/JCI74347.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gantier, M.P. 2013. The not-so-neutral role of microRNAs in neutrophil biology. Journal of Leukocyte Biology 94: 575–583. doi:10.1189/jlb.1012539.

    Article  CAS  PubMed  Google Scholar 

  44. Pivarcsi, A., F. Meisgen, N. Xu, M. Ståhle, and E. Sonkoly. 2013. Changes in the level of serum microRNAs in patients with psoriasis after antitumour necrosis factor-α therapy. The British Journal of Dermatology 169: 563–570. doi:10.1111/bjd.12381.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. G. Bechara.

Ethics declarations

This study was approved by the Ethical Review Board of the Ruhr-University Bochum, Germany (registration no.: 5076–14).

Funding

The authors received no funding to perform this study.

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki Declaration and its later amendments.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hessam, S., Sand, M., Skrygan, M. et al. Expression of miRNA-155, miRNA-223, miRNA-31, miRNA-21, miRNA-125b, and miRNA-146a in the Inflammatory Pathway of Hidradenitis Suppurativa. Inflammation 40, 464–472 (2017). https://doi.org/10.1007/s10753-016-0492-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-016-0492-2

KEY WORDS

Navigation