Skip to main content

Advertisement

Log in

RS Virus-Induced Inflammation and the Intracellular Glutathione Redox State in Cultured Human Airway Epithelial Cells

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

There is ample evidence that asthma is mediated by oxidative stress and that viral infection, which is associated with asthma onset and exacerbation in infants, acts as one type of oxidative stress. The goal of this study was to determine whether respiratory syncytial virus (RSV) induces oxidative stress in cultured A549 human airway epithelial cells and normal human bronchial epithelial cells (NHBE), and whether such RSV-induced oxidative stress can induce airway inflammation. To evaluate the direct effect of RSV infection as an oxidative stressor, the intracellular levels of reduced glutathione (GSH) or oxidized glutathione (GSSG) were measured. Their ratio (GSH/GSSG) was calculated to indicate intracellular oxidation–reduction (redox) status in A549 and NHBE. To evaluate the extent to which glutathione redox regulation affected cytokine/chemokine production, the effect of pretreatment with a reductive agent, glutathione monoethyl ester (GSH-OEt) and RSV-specific monoclonal antibody was thus studied. RSV acted as a potent oxidative stressor on the intracellular glutathione redox state in human airway epithelial cells, activating signals to increase the production of cytokine/chemokine. Pretreatment with GSH-OEt significantly suppressed RSV-induced time-dependent changes in the intracellular redox state, and also suppressed RSV-induced up-regulation of epithelial cell-derived IL-8, IL-6 and eotaxin production, as well as RSV-specific monoclonal antibody. RSV-induced oxidative stress is likely to contribute to the perpetuation and amplification of the inflammatory response. Therapeutic intervention against oxidative stress might therefore be beneficial as adjunctive therapies for respiratory disorders that are caused by an RSV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

BPE:

Bovine pituitary extract

DTNB:

5-5,-dithiobis-2-nitrobenzoic acid

DTT:

Dithiothreitol

EDTA:

Ethylenediamine tetraacetate

hEGF:

Human recombinant epidermal growth factor

FCS:

Fetal calf serum

GSH:

Reduced glutathione

GSH-OEt:

Glutathione monoethyl ester

GSSG:

Oxidized GSH

H2O2 :

Superoxide radicals and hydrogen peroxide

IRF-3:

Interferon regulatory factor 3

MCP:

Monocyte chemotactic protein

β-NADPH:

Nicotinamide adenine dinucleotide phosphate

NF-κB:

Nuclear factor-κB

NHBE:

Normal human bronchial epithelial cells

Redox:

Reduction–oxidation

RSV:

Respiratory syncytial virus

References

  1. McConnochie, K. M., and K. J. Roghmann. 1984. Bronchiolitis as a possible cause of wheezing in childhood: new evidence. Pediatrics 74:1–10.

    PubMed  CAS  Google Scholar 

  2. Murray, M., M. S. Webb, C. O’Callaghan, A. S. Swarbrick, and A. D. Milner. 1992. Respiratory status and allergy after bronchiolitis. Arch. Dis. Child 67:482–487. doi:10.1136/adc.67.4.482.

    Article  PubMed  CAS  Google Scholar 

  3. Corradi, M., P. Pignatti, P. Manini, R. Andreoli, M. Goldoni, M. Poppa, G. Moscato, B. Balbi, and A. Mutti. 2004. Comparison between exhaled and sputum oxidative stress biomarkers in chronic airway inflammation. Eur. Respir. J. 24:1011–1017. doi:10.1183/09031936.04.00002404.

    Article  PubMed  CAS  Google Scholar 

  4. Ichiki, H., T. Hoshino, T. Kinoshita, H. Imaoka, S. Kato, H. Inoue, H. Nakamura, J. Yodoi, H. A. Young, and H. Aizawa. 2005. Thioredoxin suppresses airway hyperresponsiveness and airway inflammation in asthma. Biochem. Biophys. Res. Commun. 334:1141–1148. doi:10.1016/j.bbrc.2005.07.007.

    Article  PubMed  CAS  Google Scholar 

  5. Koike, Y., T. Hisada, M. Utsugi, T. Ishizuka, Y. Shimizu, A. Ono, Y. Murata, J. Hamuro, M. Mori, and K. Dobashi. 2007. Glutathione redox regulates airway hyperresponsiveness and airway inflammation in mice. Am. J. Respir. Cell Mol. Biol. 37:322–329. doi:10.1165/rcmb.2006-0423OC.

    Article  PubMed  CAS  Google Scholar 

  6. Lawrence, B. P., Y. Will, D. J. Reed, and N. I. Kerkvliet. 2000. Gamma-glutamyl transpeptidase knockout mice as a model for understanding the consequences of diminished glutathione on T-cell-dependent immune responses. Eur. J. Immunol. 30:1902–1910. doi:10.1002/1521-4141(200007)30:7<1902::AID-IMMU1902>3.0.CO;2-A.

    Article  PubMed  CAS  Google Scholar 

  7. Epperlein, M. M., J. Nourooz-Zadeh, A. A. Noronha-Dutra, and N. Woolf. 1996. Nitric oxide in cigarette smoke as a mediator of oxidative damage. Int. J. Exp. Pathol. 77:197–200. doi:10.1046/j.1365-2613.1996.9930331.x.

    Article  PubMed  CAS  Google Scholar 

  8. Repine, J. E., A. Bast, and I. Lankhorst. 1997. Oxidative stress in chronic obstructive pulmonary disease. Oxidative Stress Study Group. Am. J. Respir. Crit. Care Med. 156:341–357.

    PubMed  CAS  Google Scholar 

  9. Barnes, P. J. 1995. Air pollution and asthma: molecular mechanisms. Mol. Med. Today 1:149–55. doi:10.1016/S1357-4310(95)80093-X.

    Article  PubMed  CAS  Google Scholar 

  10. Bowler, R. P., and J. D Crapo. 2002. Oxidative stress in allergic respiratory diseases. J. Allergy Clin. Immunol. 110:349–356. doi:10.1067/mai.2002.126780.

    Article  PubMed  CAS  Google Scholar 

  11. Jarjour, N. N., W. W. Busse, and W. J. Calhoun. 1992. Enhanced production of oxygen radicals in nocturnal asthma. Am. Rev. Respir. Dis. 146:905–911.

    PubMed  CAS  Google Scholar 

  12. Jarjour, N. N., and W. J. Calhoun. 1994. Enhanced production of oxygen radicals in asthma. J. Lab. Clin. Med. 123:131–137.

    PubMed  CAS  Google Scholar 

  13. Calhoun, W. J., H. E. Reed, D. R. Moest, and C. A. Stevens. 1992. Enhanced superoxide production by alveolar macrophages and air-space cells, airway inflammation, and alveolar macrophage density changes after segmental antigen bronchoprovocation in allergic subjects. Am. Rev. Respir. Dis. 145:317–325.

    PubMed  CAS  Google Scholar 

  14. Bunnell, E., and E. Pacht. 1993. Oxidized glutathione is increased in the alveolar fluid in patients with the adult respiratory distress syndrome. Am. Rev. Respir. Dis. 148:1174–1178.

    PubMed  CAS  Google Scholar 

  15. Kelly, F. J., L. Mudway, A. Blomberg, A. Frew, and T. Sandstorm. 1999. Altered lung antioxidant status in patients with mild asthma. Lancet 354:482–483. doi:10.1016/S0140-6736(99)01812-7.

    Article  PubMed  CAS  Google Scholar 

  16. Norzila, M. Z., K. Fakes, R. L. Henry, J. Simpson, and P. G. Gibson. 2000. Interleukin-8 secretion and neutrophil recruitment accompanies induced sputum eosinophil activation in children with acute asthma. Am. J. Respir. Crit. Care Med. 161:769–74.

    PubMed  CAS  Google Scholar 

  17. Tekkanat, K. K., H. F. Maassab, D. S. Cho, J. J. Lai, A. John, A. Berlin, M. H. Kaplan, and N. W. Lukacs. 2001. IL-13-induced airway hyperreactivity during respiratory syncytial virus infection is STAT6 dependent. J. Immunol. 166:3542–3548.

    PubMed  CAS  Google Scholar 

  18. Lieber, M., B. Smith, A. Szakal, W. Nelson-Rees, and G. Todaro. 1976. A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells. Int. J. Cancer 17:62–70. doi:10.1002/ijc.2910170110.

    Article  PubMed  CAS  Google Scholar 

  19. Ueba, O. 1980. Respiratory syncytial virus. II. Isolation and morphology of the glycoproteins. Acta Med. Okayama 34:245–254.

    PubMed  CAS  Google Scholar 

  20. Kisch, A. L., and K. M. Johnson. 1963. A plaque assay for respiratory syncytial virus. Proc. Soc. Exp. Biol. Med. 112:583–589.

    PubMed  CAS  Google Scholar 

  21. Schlender, J., G. Walliser, J. Fricke, and K. K. Conzelmann. 2002. Respiratory syncytial virus fusion protein mediates inhibition of mitogen-induced T-cell proliferation by contact. J. Virol. 76:1163–1170.

    PubMed  CAS  Google Scholar 

  22. Tietze, F. 1969. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal. Biochem. 27:502–522. doi:10.1016/0003-2697(69)90064-5.

    Article  PubMed  CAS  Google Scholar 

  23. Buchmuller-Rouiller, Y., S. B. Corrandin, J. Smith, P. Schneider, A. Ransijn, C. V. Jongeneel, and J. Mauel. 1995. Role of glutathione in macrophage activation: effect of cellular glutathione depletion on nitrite production and leishmanicidal activity. Cell. Immunol. 164:73–80. doi:10.1006/cimm.1995.1144.

    Article  PubMed  CAS  Google Scholar 

  24. Griffith, O. W. 1980. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal. Biochem. 106:207–212. doi:10.1016/0003-2697(80)90139-6.

    Article  PubMed  CAS  Google Scholar 

  25. Sugiyama, M., H. Arakawa, K. Ozawa, T. Mizuno, H. Mochizuki, K. Tokuyama, and A. Morikawa. 2007. Early-life risk factors for occurrence of atopic dermatitis during the first year. Pediatrics 119:716–723. doi:10.1542/peds.2006-0893.

    Article  Google Scholar 

  26. Todokoro, M., H. Mochizuki, K. Tokuyama, M. Utsugi, K. Dobashi, M. Mori, and A. Morikawa. 2004. Effect of ozone exposure on intracellular glutathione redox state in cultured human airway epithelial cells. Inflammation 28:105–114. doi:10.1023/B:IFLA.0000033026.91221.ed.

    Article  PubMed  CAS  Google Scholar 

  27. Leader, S., and K. Kohlhase. 2002. Respiratory syncytial virus-coded pediatric hospitalizations, 1997 to 1999. Pediatr. Infect. Dis. J. 21:629–632. doi:10.1097/00006454-200207000-00005.

    Article  PubMed  Google Scholar 

  28. Noble, V., M. Murray, M. S. Webb, J. Alexander, A. S. Swarbrick, and A. D. Milner. 1997. Respiratory status and allergy nine to 10 years after acute bronchiolitis. Arch. Dis. Child 76:315–319. doi:10.1136/adc.76.4.315.

    Article  PubMed  CAS  Google Scholar 

  29. Sigurs, N., P. M. Gustafsson, R. Bjarnason, F. Lundberg, S. Schmidt, F. Sigurbergsson, and B. Kjellman. 2005. Severe respiratory syncytial virus bronchiolitis in infancy and asthma and allergy at age 13. Am. J. Respir. Crit. Care Med. 171:137–141. doi:10.1164/rccm.200406-730OC.

    Article  PubMed  Google Scholar 

  30. Sigurs, N., R. Bjarnason, F. Sigurbergsson, and B. Kjellman. 2000. Respiratory syncytial virus bronchiolitis in infancy is an important risk factor for asthma and allergy at age 7. Am. J. Respir. Crit. Care Med. 161:1501–1507.

    PubMed  CAS  Google Scholar 

  31. Carpenter, L. R., J. N. Moy, and K. A Roebuck. 2002. Respiratory syncytial virus and TNF alpha induction of chemokine gene expression involves differential activation of Rel A and NF-kappa B1. BMC Infect. Dis. 2:5. doi:10.1186/1471-2334-2-5.

    Article  PubMed  Google Scholar 

  32. Casola, A., N. Burger, T. Liu, M. Jamaluddin, A. R. Brasier, and R. P. Garofalo. 2001. Oxidant tone regulates RANTES gene expression in airway epithelial cells infected with respiratory syncytial virus. Role in viral-induced interferon regulatory factor activation. J. Biol. Chem. 276:19715–19722. doi:10.1074/jbc.M101526200.

    Article  PubMed  CAS  Google Scholar 

  33. Aherne, W., T. Bird, S. D. Court, P. S. Gardner, and J. McQuillin. 1970. Pathological changes in virus infections of the lower respiratory tract in children. J. Clin. Pathol. 23:7–18. doi:10.1136/jcp.23.1.7.

    Article  PubMed  CAS  Google Scholar 

  34. Hall, C. B. 2001. Respiratory syncytial virus and parainfluenza virus. N. Engl. J. Med. 344:1917–1928. doi:10.1056/NEJM200106213442507.

    Article  PubMed  CAS  Google Scholar 

  35. Casola, A., R. P. Garofalo, H. Haeberle, T. F. Elliott, R. Lin, M. Jamaluddin, and A. R. Brasier. 2001. Multiple cis regulatory elements control RANTES promoter activity in alveolar epithelial cells infected with respiratory syncytial virus. J. Virol. 75:6428–6439. doi:10.1128/JVI.75.14.6428-6439.2001.

    Article  PubMed  CAS  Google Scholar 

  36. Zhang, Y., B. A. Luxon, A. Casola, R. P. Garofalo, M. Jamaluddin, and A. R. Brasier. 2001. Expression of respiratory syncytial virus-induced chemokine gene networks in lower airway epithelial cells revealed by cDNA microarrays. J. Virol. 75:9044–9058. doi:10.1128/JVI.75.19.9044-9058.2001.

    Article  PubMed  CAS  Google Scholar 

  37. Chanez, P. 2005. Severe asthma is an epithelial disease. Eur. Respir. J. 25:945–946. doi:10.1183/09031936.05.00038605.

    Article  PubMed  CAS  Google Scholar 

  38. Baggiolini, M., B. Dewald, and B. Moser. 1994. Interleukin-8 and related chemotactic cytokines-CXC and CC chemokines. Adv. Immunol. 55:97–179. doi:10.1016/S0065-2776(08)60509-X.

    Article  PubMed  CAS  Google Scholar 

  39. Norzila, M. Z., K. Fakes, R. L. Henry, J. Simpson, and P. G. Gibson. Interleukin-8 secretion and neutrophil recruitment accompanies induced sputum eosinophil activation in children with acute asthma. Am. J. Respir. Crit. Care Med. 161:769–774.

  40. Fujimura, M., Q. Xiu, M. Tsujiura, H. Tachibana, S. Myou, T. Matsuda, and K. Matsushima. 1998. Role of leukotriene B4 in bronchial hyperresponsiveness induced by interleukin-8. Eur. Respir. J. 11:306–311. doi:10.1183/09031936.98.11020306.

    Article  PubMed  CAS  Google Scholar 

  41. Xiu, Q., M. Fujimura, M. Nomura, M. Saito, T. Matsuda, N. Akao, K. Kondo, and K. Matsushima. 1995. Bronchial hyperresponsiveness and airway neutrophil accumulation induced by interleukin-8 and the effect of the thromboxane A2 antagonist S-1452 in guinea-pigs. Clin. Exp. Allergy 25:51–59. doi:10.1111/j.1365-2222.1995.tb01002.x.

    Article  PubMed  CAS  Google Scholar 

  42. Message, S. D., and S. L. Johnston. 2004. Host defense function of the airway epithelium in health and disease: clinical background. J. Leukoc. Biol. 75:5–17. doi:10.1189/jlb.0703315.

    Article  PubMed  CAS  Google Scholar 

  43. Dobashi, K., M. Aihara, T. Araki, Y. Shimizu, M. Utsugi, K. Iizuka, Y. Murata, J. Hamuro, T. Nakazawa, and M. Mori. 2001. Regulation of LPS induced IL-12 production by IFN-gamma and IL-4 through intracellular glutathione status in human alveolar macrophages. Clin. Exp. Immunol. 124:290–296. doi:10.1046/j.1365-2249.2001.01535.x.

    Article  PubMed  CAS  Google Scholar 

  44. Utsugi, M., K. Dobashi, Y. Koga, Y. Shimizu, T. Ishizuka, K. Iizuka, J. Hamuro, T. Nakazawa, and M. Mori. 2002. Glutathione redox regulates lipopolysaccharide-induced IL-12 production through p38 mitogen-activated protein kinase activation in human monocytes: role of glutathione redox in IFN-gamma priming of IL-12 production. J. Leukoc. Biol. 71:339–347.

    PubMed  CAS  Google Scholar 

  45. Kunkel, S. L., T. Standiford, K. Kasahara, and R. M. Strieter. 1991. nterleukin-8 (IL-8): the major neutrophil chemotactic factor in the lung. Exp. Lung Res. 17:17–23. doi:10.3109/01902149109063278.

    Article  PubMed  CAS  Google Scholar 

  46. DeForge, L. E., J. C. Fantone, J. S. Kenney, and D. G. Remick. 1992. Oxygen radical scavengers selectively inhibit interleukin-8 production in human whole blood. J. Clin. Invest. 90:2123–2129. doi:10.1172/JCI116097.

    Article  PubMed  CAS  Google Scholar 

  47. Haeberle, H. A., R. Takizawa, A. Casola, A. R. Brasier, H. J. Dieterich, R. N. Van, Z. Gatalica, and R. P. Garofalo. 2002. Respiratory syncytial virus-induced activation of nuclear factor-kappaB in the lung involves alveolar macrophages and toll-like receptor 4-dependent pathways. J. Infect. Dis. 186:1199–1206. doi:10.1086/344644.

    Article  PubMed  CAS  Google Scholar 

  48. Jamaluddin, M., A. Casola, R. P. Garofalo, Y. Han, T. Elliott, P. L. Ogra, and A. R. Brasier. 1998. The major component of IκBα proteolysis occurs independently of the proteasome pathway in respiratory syncytial virus-infected pulmonary epithelial cells. J. Virol. 72:4849–4857.

    PubMed  CAS  Google Scholar 

  49. Meyer, M., H. L. Pahl, and P. A. Baeuerle. 1994. Regulation of the transcription factors NF-kappa B and AP-1 by redox changes. Chem. Biol. Interact. 91:91–100. doi:10.1016/0009-2797(94)90029-9.

    Article  PubMed  CAS  Google Scholar 

  50. Rouse, J., P. Cohen, S. Trigon, M. Morange, A. Alonso-Llamazares, D. Zamanillo, T. Hunt, and A. R. Nebreda. 1994. A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell 78:1027–1037. doi:10.1016/0092-8674(94)90277-1.

    Article  PubMed  CAS  Google Scholar 

  51. Kunkel, S. L., T. Standiford, K. Kasahara, and R. M. Strieter. 1991. Interleukin-8 (IL-8): the major neutrophil chemotactic factor in the lung. Exp. Lung Res. 17:17–23. doi:10.3109/01902149109063278.

    Article  PubMed  CAS  Google Scholar 

  52. Meyer, M., H. L. Pahl, and P. A. Baeuerle. 1994. Regulation of the transcription factors NF-kappa B and AP-1 by redox changes. Chem. Biol. Interact. 91:91–100. doi:10.1016/0009-2797(94)90029-9.

    Article  PubMed  CAS  Google Scholar 

  53. Simeonova, P. P., and M. I. Luster. 1996. Asbestos induction of nuclear transcription factors and interleukin 8 gene regulation. Am. J. Respir. Cell Mol. Biol. 15:787–795.

    PubMed  CAS  Google Scholar 

  54. Wang, J., H. Mochizuki, M. Todokoro, H. Arakawa, and A. Morikawa. 2008. Does leukotriene affect intracellular glutathione redox state in cultured human airway epithelial cells. Antioxid. Redox Signal 10:821–828. doi:10.1089/ars.2007.1960.

    Article  PubMed  CAS  Google Scholar 

  55. Ciencewicki, J., S. Trivedi, and S. R. Kleeberger. 2008. Oxidants and the pathogenesis of lung diseases. J. Allergy Clin. Immunol. 122:456–68. doi:10.1016/j.jaci.2008.08.004.

    Article  PubMed  CAS  Google Scholar 

  56. Castro, S. M., A. Guerrero-Plata, G. Suarez-Real, P. A. Adegboyega, G. N. Colasurdo, A. M. Khan, R. P. Garofalo, and A. Casola. 2006. Antioxidant treatment ameliorates respiratory syncytial virus-induced disease and lung inflammation. Am. J. Respir. Crit. Care Med. 174:1361–1369. doi:10.1164/rccm.200603-319OC.

    Article  PubMed  CAS  Google Scholar 

  57. The IMpact-RSV Study Group. 1998. Palivizumab, a humanized respiratory syncytial virus monoclonal antibody, reduces hospitalization from respiratory syncytial virus infection in high-risk infants. Pediatrics 102:531–537. doi:10.1542/peds.102.3.531.

    Article  Google Scholar 

  58. Feltes, T. F., A. K. Cabalka, H. C. Meissner, F. M. Piazza, D. A. Carlin, F. H. Top Jr, E. M. Connor, and H. M. Sondheimer. 2003. Palivizumab prophylaxis reduces hospitalization due to respiratory syncytial virus in young children with hemodynamically significant congenital heart disease. J. Pediatr. 143:532–540. doi:10.1067/S0022-3476(03)00454-2.

    Article  PubMed  CAS  Google Scholar 

  59. Simoes, E. A., J. R. Groothuis, X. Carbonell-Estrany, C. H. Rieger, I. Mitchell, L. M. Fredrick, J. L. Kimpen, and Palivizumab Long-Term Respiratory Outcomes Study Group. 2007. Palivizumab prophylaxis, respiratory syncytial virus, and subsequent recurrent wheezing. J. Pediatr. 15:34–42. doi:10.1016/j.jpeds.2007.02.032.

    Google Scholar 

Download references

Acknowledgments

We thank Junying Wang, M.D, Mitsuyoshi Utsugi M.D., Kunio Dobashi M.D., Masatomo Mori M.D., Ms. Tomoko Endo and Ms. Chinori Iijima (Gunma University, Maebashi, Japan) for their valuable general scientific and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Mochizuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mochizuki, H., Todokoro, M. & Arakawa, H. RS Virus-Induced Inflammation and the Intracellular Glutathione Redox State in Cultured Human Airway Epithelial Cells. Inflammation 32, 252–264 (2009). https://doi.org/10.1007/s10753-009-9128-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-009-9128-0

KEY WORDS

Navigation