Skip to main content
Log in

Morin transition suppression in Polycrystalline 57Hematite (α-Fe2O3) exposed to 56Fe(II)

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

We used the isotope selectivity of 57Fe Mössbauer spectroscopy to investigate changes in the magnetic properties of polycrystalline hematite exposed to ferrous iron (Fe(II)). We found that sorption of 56Fe(II), followed by interfacial electron exchange, alters the bulk magnetic properties of 57hematite. After reaction with 56Fe(II), we observed partial suppression of the Morin transition of 57hematite to below 13 K. This is significantly lower than the Morin temperature (T M) of ∼230 K measured for isotopically enriched polycrystalline 57hematite, as well as the T M of 264 ± 2 K reported for normal polycrystalline hematite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huo, L.H., Li, X.L., Li, W., Xi, S.Q.: Gas sensitivity of composite Langmuir–Blodgett films of Fe2O3 nanoparticle-copper phthalocyanine. Sens. Actuators, B, Chem. 71(1–2), 77 (2000)

    Article  Google Scholar 

  2. Lee, S.W., Kim, S.J., Shim, I.-B., Bae, S., Kim, C.S.: Mössbauer studies of nano-size controlled iron oxide for biomedical applications. IEEE Trans. Magn. 41(10), 4114–4116 (2005)

    Article  ADS  Google Scholar 

  3. Murad, E., Cashion, J.: Mössbauer Spectroscopy of Environmental Materials and their Industrial Utilization. Kluwer (2004)

  4. Morrish, A.H.: Canted Antiferromagnetism: Hematite. World Scientific, Singapore (1994)

    Google Scholar 

  5. Dang, M.Z., Rancourt, D.G., Dutrizac, J.E., Lamarche, G., Provencher, R.: Interplay of surface conditions, particle size, stoichiometry, cell parameters, and magnetism in synthetic hematite-like materials. Hyperfine Interact. 117(1–4), 271–319 (1998)

    Article  ADS  Google Scholar 

  6. Amin, N., Arajs, S.: Morin temperature of annealed submicronic α-Fe2O3 particles. Phys. Rev. B 35(10), 4810–4811 (1987)

    Article  ADS  Google Scholar 

  7. Besser, P., Morrish, A., Searle, C.: Magnetocrystalline anisotropy of pure and doped hematite. Phys. Rev. 153(2), 632–640 (1966)

    Article  ADS  Google Scholar 

  8. Lamykin, E., Fabrichnyi, P., Babeshkin, A., Nesmeyanov, A.: Influence of small amounts of tin on the Morin transition temperature in hematite (alpha-Fe2O3). Sov. Phys. Solid State 15(3), 601–603 (1972)

    Google Scholar 

  9. Lovley, D.R.: Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev. 55(2), 259 (1991)

    Google Scholar 

  10. Beard, B.L., Johnson, C.M.: Fe isotope variations in the modern and ancient earth and other planetary bodies. In: Johnson, C.M., Beard, B.L., Albarede, F. (eds) Reviews in Mineralogy and Geochemistry: Geochemistry of Non-traditional Stable Isotopes. The Mineralogical Society of America, Washington, DC (2004)

    Google Scholar 

  11. Haderlein, S.B., Pecher, K.: Pollutant reduction in heterogeneous Fe(II)/Fe(III) systems. In: Grundl, T., Sparks, D. (eds) Mineral-water Interfacial Reactions: Kinetics and Mechanisms, pp. 342–357. American Chemical Society, (1998)

  12. Balko, B.A., Clarkson, K.M.: The effect of doping with Ti(IV) and Sn(IV) on oxygen reduction at hematite electrodes. J. Electrochem. Soc. 148(2), E85–E91 (2001)

    Article  Google Scholar 

  13. Schwertmann, U., Cornell, R.M.: Iron Oxides in the Laboratory. VCH, Weinheim (1991)

    Google Scholar 

  14. Schilt, A.A.: Analytical applications of 1,10-phenanthroline and related compounds. Pergamon, Oxford (1969)

    Google Scholar 

  15. Duvigneaud, P.H., Derie, R.: Shape effects on crystallite size distributions in synthetic hematites from X-ray line-profile analysis. J. Solid State Chem. 34, 323–333 (1980)

    Article  ADS  Google Scholar 

  16. Kündig, W., Bommel, H., Constabaris, G., Lindquist, R.H.: Some properties of supported small alpha-Fe2O3 particles determined with the Mössbauer effect. Phys. Rev. 142(2), 327–333 (1966)

    Article  ADS  Google Scholar 

  17. Salugin, A.N., Povitskii, V.A., Filin, M.V., Erkin, V.M., Dudoladov, V.V.: Spin reorientation of hematite studied by Mössbauer spectroscopy. Sov. Phys., Solid State 16, 792 (1974)

    Google Scholar 

  18. Verbeeck, A.E., De Grave, E., Vandengerghe, R.E.: The effect of particle morphology on the Mössbauer effect in αFe2O3. Hyperfine Interact. 28, 639–642 (1986)

    Article  ADS  Google Scholar 

  19. Wu, J.-J., Lee, Y.-L., Chiang, H.-H., Wong, D.K.-P.: Growth and magnetic properties of oriented α-Fe2O3 nanorods. J. Phys. Chem. B 110, 18108–18111 (2006)

    Article  Google Scholar 

  20. Zysler, R.D., Fiorani, D., Testa, A.M., Suber, L., Agostinelli, E.: Size dependence of the spin-slop transition in hematite nanoparticles. Phys. Rev. B 68, 212408-1–212408-4 (2003)

    Article  Google Scholar 

  21. Williams, A.G.B., Scherer, M.M.: Spectroscopic evidence for Fe(II)–Fe(III) electron transfer at the Fe oxide–water interface. Environ. Sci. Technol. 38(18), 4782 (2004)

    Article  Google Scholar 

  22. Rosso, K.M., Smith, D.M.A., Dupuis, M.: An ab initio model of electron transport in hematite (α-Fe2O3) basal planes. J. Chem. Phys. 118(14), 6455 (2003)

    Article  ADS  Google Scholar 

  23. Kerisit, S., Rosso, K.M.: Computer simulation of electron transfer at hematite surfaces. Geochim. Cosmochim. Acta 70(8), 1888 (2006)

    Article  ADS  Google Scholar 

  24. Liu, G., Debnath, S., Paul, K.W., Han, W., Hausner, D.B., Hosein, H.-A., Michel, F.M., Parise, J.B., Sparks, D.L., Strongin, D.R.: Characterization and surface reactivity of ferrihydrite nanoparticles assembled in ferritin. Langmuir 22, 9313 (2006)

    Article  Google Scholar 

  25. Cornell, R.M., Schwertmann, U.: The Iron Oxides: Structure, Properties, Reactions, Occurrence, and Uses. VCH, New York (1996)

    Google Scholar 

  26. Bruzzone, C.L., Ingalls, R.: Mössbauer-effect study of the Morin transition and atomic positions. Phys. Rev. B 28(5), 2430–2440 (1983)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Larese-Casanova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larese-Casanova, P., Scherer, M.M. Morin transition suppression in Polycrystalline 57Hematite (α-Fe2O3) exposed to 56Fe(II). Hyperfine Interact 174, 111–119 (2007). https://doi.org/10.1007/s10751-007-9517-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-007-9517-4

Keywords

Navigation