Skip to main content

Advertisement

Log in

Allometric models for aboveground biomass estimation of the mangrove Avicennia schaueriana

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

As mangroves become recognized as important carbon storages, the need for reducing the uncertainty of carbon inventories becomes increasingly emphasized. Accordingly, the objective of this study was to develop allometric models to estimate the total aboveground biomass (AGB) and the biomass per compartment of Avicennia schaueriana and to compare them with other models previously published for the genus Avicennia. Fifty three A. schaueriana trees, with different diameters at breast height (DBH) and height, were felled in a mangrove from Southeastern Brazil and their dry weight determined. Simple linear regression analysis was used to develop the equations after log-transformation, using the following independent variables: DBH and DBH2 * height. All the equations were significant and presented high R 2 a (adjusted coefficient of determination). DBH provided the lowest SEE (standard error of estimation) in the regressions associated to leaves and total AGB, while DBH2 * height generated the most precise regressions for trunk, branches, and twigs. In comparison with other 11 equations previously developed for the genus Avicennia, the equation developed in the present study for total AGB showed the lowest mean deviation in relation to trees with known biomass, underscoring the importance of developing species- and site-specific equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abohassan, R. A. A., C. A. Okia, J. G. Agea, J. M. Kimondo & M. M. McDonald, 2012. Perennial biomass production in arid mangrove systems on the Red Sea coast of Saudi Arabia. Environmental Research Journal 6: 22–31.

    Google Scholar 

  • Alongi, D. M., B. F. Clough, P. Dixon & F. Tirendi, 2003. Nutrient partitioning and storage in arid-zone forests of the mangroves Rhizophora stylosa and Avicennia marina. Trees 17: 51–60.

    Article  CAS  Google Scholar 

  • Amarasinghe, M. D. & S. Balasubramaniam, 1992. Net primary productivity of two mangrove forest stands on the Northwestern coast of Sri Lanka. Hydrobiologia 247: 37–47.

    Article  Google Scholar 

  • Baskerville, G. L., 1972. Use of logarithmic regression in the estimation of plant biomass. Canadian Journal of Forest Research 2: 49–53.

    Article  Google Scholar 

  • Breugel, M., J. Ransijn, D. Craven, F. Bongers & J. S. Hall, 2011. Estimating carbon stock in secondary forests: decisions and uncertainties associated with allometric biomass models. Forest Ecology and Management 262: 1648–1657.

    Article  Google Scholar 

  • Brown, S., 2002. Measuring carbon in forests: current status and future challenges. Environmental Pollution 116: 363–372.

    Article  CAS  PubMed  Google Scholar 

  • Chave, J., R. Condit, S. Aguilar, A. Hernandez, S. Lao & R. Perez, 2004. Error propagation and scaling for tropical forest biomass estimates. Philosophical Transactions of the Royal Society B: Biological Sciences 359: 409–420.

    Article  Google Scholar 

  • Chave, J., C. Andalo, S. Brown, M. A. Cairns, J. Q. Chambers, D. Eamus, H. Fölster, F. Fromard, N. Higuchi, T. Kira, J. P. Lescure, B. W. Nelson, H. Ogawa, H. P. B. Riéra & T. Yamakura, 2005. Tree allometry and improved estimation of carbon stocks and balance in Tropical Forests. Oecologia 145: 87–99.

    Article  CAS  PubMed  Google Scholar 

  • Cintron, G., A. E. Lugo & R. Martinez, 1985. Structural and functional properties of Mangrove Forests. In D’Arcy, W. G. & M. D. Correa (eds), The Botany and Natural History of Panama. Missouri Botanical Garden, Saint Louis: 53–66.

    Google Scholar 

  • Clough, B., 1998. Mangrove forest productivity and biomass accumulation in Hinchinbrook Channel, Australia. Mangroves and Salt Marshes 2: 191–198.

    Article  Google Scholar 

  • Clough, B. F., P. Dixon & O. Dalhaus, 1997. Allometric relationships for estimating biomass in multi-stemmed mangrove trees. Australian Journal of Botany 45: 1023–1031.

    Article  Google Scholar 

  • Cole, T. G., K. C. Ewel & N. N. Devoe, 1999. Structure of mangrove trees and forests in Micronesia. Forest Ecology and Management 117: 95–109.

    Article  Google Scholar 

  • Comley, B. W. T. & K. A. McGuiness, 2005. Tree allometry and improved estimation of carbon stocks and balance in Tropical Forests. Australian Journal of Botany 53: 431–436.

    Article  Google Scholar 

  • Day Jr., J. W., W. H. Conner, F. Ley-Lou, R. H. Day & A. M. Navarro, 1987. The productivity and composition of mangrove forests, Laguna de Terminos, Mexico. Aquatic Botany 27: 267–284.

    Article  Google Scholar 

  • Donato, D. C., J. B. Kauffman, D. Murdiyarso, S. Kurnianto, M. Stidham & M. Kanninen, 2011. Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience 4: 293–297.

    Article  CAS  Google Scholar 

  • Draper, N. R. & H. Smith, 1981. Applied Regression Analysis. Wiley Series in Probability and Mathematical Statistics. Wiley, New York.

    Google Scholar 

  • Eisenhauer, J. G., 2003. Regression through the origin. Teaching Statistics 25: 76–80.

    Article  Google Scholar 

  • Estrada, G. C. D., C. H. Callado, M. L. G. Soares & C. S. Lisi, 2008. Annual growth rings in the mangrove Laguncularia racemosa (Combretaceae). Trees 22: 663–670.

    Article  Google Scholar 

  • Estrada, G. C. D., M. L. G. Soares, F. O. Chaves & V. Fernandez, 2013. Analysis of the structural variability of mangrove forests through the physiographic types approach. Aquatic Botany 111: 135–143.

    Article  Google Scholar 

  • Fromard, F., H. Puig, E. Mougin, G. Marty, J. L. Betoulle & L. Cadamuro, 1998. Structure, above-ground biomass and dynamics of mangrove ecosystems: new data from French Guiana. Oecologia 115: 39–53.

    Article  Google Scholar 

  • Fromard, F., C. Vega & C. Proisy, 2004. Half a century of dynamic coastal change affecting mangrove shorelines of French Guiana. A case study based on remote sensing data analyses and field surveys. Marine Geology 208: 265–280.

    Article  Google Scholar 

  • Gibbs, H. K., S. Brown, J. O. Niles & J. A. Foley, 2007. Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environmental Research Letters 2: 1–13.

    Google Scholar 

  • Gordon, H. A., 1981. Errors in computer packages. Least squares regression through the origin. The Statistician 30: 23–29.

    Article  Google Scholar 

  • Healy, M. J. R., 1984. The use of R2 as a measure of goodness of fit. Journal of the Royal Statistical Society 147: 608–609.

    Article  Google Scholar 

  • Imbert, D. & B. Rollet, 1989. Phytomasse aerienne et production primaire dans la mangrove du Grand Cul-De-Sac Marin (Guadeloupe, Antillas Francaises). Bulletin d’Ecologie 20: 27–39.

    Google Scholar 

  • Jimenez, J. A., A. E. Lugo & G. Cintron, 1985. Tree mortality in mangrove forests. Biotropica 17: 177–185.

    Article  Google Scholar 

  • Kairo, J. G., J. Bosire, J. Langat, B. Kirui & N. Koedam, 2009. Allometry and biomass distribution in replanted mangrove plantations at Gazi Bay, Kenya. Aquatic Conservation: Marine and Freshwater Ecosystems 19: S63–S69.

    Article  Google Scholar 

  • Kauffman, J. B. & T. G. Cole, 2010. Micronesian Mangrove Forest structure and tree responses to a severe typhoon. Wetlands 30: 1077–1084.

    Article  Google Scholar 

  • Komiyama, A., V. Jintana, T. Sangtiean & S. Kato, 2002. A common allometric equation for predicting stem weight of mangroves growing in secondary forests. Ecological Research 17: 415–418.

    Article  Google Scholar 

  • Komiyama, A., S. Poungparn & S. Kato, 2005. Common allometric equations for estimating the tree weight of mangroves. Journal of Tropical Ecology 21: 471–477.

    Article  Google Scholar 

  • Komiyama, A., J. E. Ong & S. Poungparn, 2008. Allometry, biomass, and productivity of mangrove forests: a review. Aquatic Botany 89: 128–137.

    Article  Google Scholar 

  • Kuuluvainen, T., 1991. Relationships between crown projected area and components of above-ground biomass in Norway spruce trees in even-aged stands: empirical results and their interpretation. Forest Ecology and Management 40: 243–260.

    Article  Google Scholar 

  • Lovelock, C. & I. Feller, 2003. Photosynthetic performance and resource utilization of two mangrove species coexisting in a hypersaline scrub forest. Oecologia 134: 455–462.

    PubMed  Google Scholar 

  • Lugo, A. E. & S. C. Snedaker, 1974. The ecology of mangroves. Annual Review of Ecology, Evolution and Systematics 5: 39–64.

    Article  Google Scholar 

  • Medeiros, T. C. C. & E. V. S. B. Sampaio, 2008. Allometry of aboveground biomasses in mangrove species in Itamaracá, Pernambuco, Brazil. Wetlands Ecology and Management 16: 323–330.

    Article  Google Scholar 

  • Moreira-Burger, D. & W. B. C. Delitti, 1999. Fitomassa epigéa da mata ciliar do Rio Mogi-Guaçu, Itapira—SP. Revista Brasileira de Botânica 22: 429–435.

    Google Scholar 

  • Nelson, B. W., R. Mesquita, J. L. G. Pereira, S. G. A. Souza, G. T. Batista & L. B. Couto, 1999. Allometric regressions for improved estimate of secondary forest biomass in the central Amazon. Forest Ecology and Management 117: 149–167.

    Article  Google Scholar 

  • Payandeh, B., 1981. Choosing regression models for biomass prediction equations. Forestry Chronicle October: 229–232.

  • Peel, M. C., B. L. Finlayson & T. A. McMahon, 2007. Updated world map of the Koppen-Geiger climate classification. Hydrology and Earth System Sciences 11: 1633–1644.

    Article  Google Scholar 

  • Pellegrini, J. A. C., M. L. G. Soares, F. O. Chaves, G. C. D. Estrada & V. F. Cavalcanti, 2009. A method for the classification of mangrove forests and sensitivity/vulnerability analysis. Journal of Coastal Research SI56: 443–447.

    Google Scholar 

  • Ray, R., D. Ganguly, C. Chowdhury, M. Dey, S. Das, M. K. Dutta, S. K. Mandal, N. Majumder, T. K. De, S. K. Mukhopadhyay & T. K. Jana, 2011. Carbon sequestration and annual increase of carbon stock in a mangrove forest. Atmospheric Environment 45: 5016–5024.

    Article  CAS  Google Scholar 

  • Rezende, A. V., A. T. Vale, C. R. Sanquetta, A. F. Figueiredo & J. M. Felfili, 2006. Comparação de modelos matemáticos para estimativa do volume, biomassa e estoque de carbono da vegetação lenhosa de um cerrado sensu stricto em Brasília, DF. Scientia Forestalis 71: 65–76.

    Google Scholar 

  • Ross, M. S., P. L. Ruiz, G. J. Telesnicki & J. F. Meeder, 2001. Estimating above-ground biomass and production in mangrove communities of Biscayne National Park, Florida (USA). Wetlands Ecology and Management 9: 27–37.

    Article  Google Scholar 

  • Saintilan, N., 1997. Above- and below-ground biomasses of two species of mangrove on the Hawkesbury River estuary, New South Wales. Marine & Freshwater Research 48: 147–152.

    Article  CAS  Google Scholar 

  • Schaeffer-Novelli, Y., G. Cintron-Molero, R. R. Adaime & T. M. Camargo, 1990. Variability of mangrove ecosystems along the Brazilian coast. Estuaries 13: 204–218.

    Article  Google Scholar 

  • Schaeffer-Novelli, Y., G. Cintrón-Molero, M. L. G. Soares & M. M. T. De-Rosa, 2000. Brazilian mangroves. Aquatic Ecosystem Health & Management 3: 561–570.

    Article  Google Scholar 

  • Sherman, R. E., T. J. Fahey & P. Martinez, 2003. Spatial patterns of biomass and aboveground net primary productivity in a mangrove ecosystem in the Dominican Republic. Ecosystems 6: 384–398.

    Article  Google Scholar 

  • Siddique, M. R. H., M. Hossain & R. K. Chowdhury, 2012. Allometric relationship for estimating above-ground biomass of Aegialitis rotundifolia Roxb. of Sundarbans mangrove forest, in Bangladesh. Journal of Forestry Research 23: 23–28.

    Article  Google Scholar 

  • Slim, F. J. & P. Gwada, 1993. Primary producers—the mangrove vegetation. In Woitchik, A. F. (ed.), Dynamics and Assessment of Kenyan Mangrove Ecosystems. Belgium-Kenya Marine & Fisheries Research Institute, Brussels: 6–34.

    Google Scholar 

  • Smith, T. J. & K. R. T. Whelan, 2006. Development of allometric relations for three mangrove species in South Florida for use in the Greater Everglades Ecosystem restoration. Wetlands Ecology and Management 14: 409–419.

    Article  Google Scholar 

  • Soares, M. L. G. & Y. Schaeffer-Novelli, 2005. Above-ground biomass of mangrove species. I. Analysis of models. Estuarine, Coastal and Shelf Science 65: 1–18.

    Article  Google Scholar 

  • Sobrado, M. A. & S. M. L. Ewe, 2006. Ecophysiological characteristics of Avicennia germinans and Laguncularia racemosa coexisting in a scrub mangrove forest at the Indian River Lagoon, Florida. Trees 20: 679–687.

    Article  Google Scholar 

  • Spalding, M., M. Kainuma & L. Collins, 2010. World Atlas of Mangroves. Earthscan, London.

    Google Scholar 

  • Sprugel, D. G., 1983. Correcting for bias in log-transformed allometric equations. Ecology 64: 209–210.

    Article  Google Scholar 

  • Suwa, R., K. Analuddin, N. I. Khan & A. Hagihara, 2008. Structure and productivity along a tree height gradient in a Kandelia obovata mangrove forest in the Manko Wetland, Okinawa Island, Japan. Wetlands Ecology and Management 16: 331–343.

    Article  Google Scholar 

  • Tam, N. F. Y., Y. S. Wong, C. Y. Lan & G. Z. Chen, 1995. Community structure and standing crop biomass of a mangrove forest in Futian Nature Reserve, Shenzhen, China. Hydrobiologia 295: 193–201.

    Article  Google Scholar 

  • Tomlinson, P. B., 1986. The Botany of Mangroves. Cambridge University Press, Cambridge.

    Google Scholar 

  • Williams, M. S. & H. T. Schreuder, 2000. Guidelines for choosing volume equations in the presence of measurement error in height. Canadian Journal of Forest Research 30: 306–310.

    Article  Google Scholar 

  • Wood, A. G., 1986. A potential bias in log-transformed allometric equations. Wader Study Group Bulletin 47: 17–19.

    Google Scholar 

  • Woodroffe, C. D., 1985. Studies of a mangrove basin, Tuff Crater, New Zealand. III. The flux of organic and inorganic particulate matter. Estuarine, Coastal and Shelf Science 20: 447–461.

    Article  CAS  Google Scholar 

  • Zar, J. H., 1996. Biostatistical Analysis. Prentice Hall, New Jersey.

    Google Scholar 

Download references

Acknowledgments

The authors thank Petrobras, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), International Foundation For Science (IFS) and Fundação SOS Mata Atlântica for the financial support.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Calderucio Duque Estrada.

Additional information

Handling editor: K.W. Krauss

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 30 kb)

Supplementary material 2 (PDF 465 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Estrada, G.C.D., Soares, M.L.G., Santos, D.M.C. et al. Allometric models for aboveground biomass estimation of the mangrove Avicennia schaueriana . Hydrobiologia 734, 171–185 (2014). https://doi.org/10.1007/s10750-014-1878-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-1878-5

Keywords

Navigation