Skip to main content

Advertisement

Log in

The periphyton as a multimetric bioindicator for assessing the impact of land use on rivers: an overview of the Ardières-Morcille experimental watershed (France)

  • GLOBAL CHANGE AND RIVER ECOSYSTEMS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Developing new biological indicators for monitoring toxic substances is a major environmental challenge. Intensive agricultural areas are generally pesticide-dependent and generate water pollution due to transfer of pesticide residues through spray-drift, run-off and leaching. The ecological effects of these pollutants in aquatic ecosystems are broad-ranging owing to the variety of substances present (herbicides, fungicides, insecticides, etc.). Biofilms (or periphyton) are considered to be early warning systems for contamination detection and their ability to reveal effects of pollutants led researchers to propose a variety of methods to detect and assess the impact of pesticides. The present article sought to provide new insights into the ecological significance of biofilm microbial communities and to discuss their bioindication potential for water quality and land use by reporting on 4 years of research performed on the French Ardières-Morcille experimental watershed (AMEW). Various biological indicators have been applied during several surveys on AMEW, allowing the characterisation of (i) the structure and diversity of biofilm communities [community level finger printing (CLFP) such as PCR–DGGE and pigment classes], (ii) functions associated with biofilm [community level physiological profiles (CLPP) such as extracellular enzymes, pesticides biodegradation or carbon sources biodegradation] and (iii) biofilm tolerance assessment (pollution-induced community tolerance, PICT) of the main contaminant in the AMEW (copper and diuron). Approaches based on CLFPs and PICT were consistent with each other and indicated the upstream–downstream impact due to the increasing land use by vineyards and the adaptation of algal and bacterial communities to the pollution gradient. CLPPs gave a contrasted bioindication because some parameters (most of the tested extracellular enzymes activities) did not detect a pollution gradient. Such CLPPs, CLFPs and PICT methods applied to biofilm could constitute the basis for a relevant in situ assessment both for chemical effects and aquatic ecosystem resilience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Admiraal, W., H. Blanck, M. Buckert De Jong, H. Guasch, N. Ivorra, V. Lehman, B. A. H. Nyström, M. Paulsson & S. Sabater, 1999. Short term toxicity of zinc to microbenthic algae and bacteria in a metal polluted stream. Water Research 33: 1989–1996.

    Article  CAS  Google Scholar 

  • AFNOR, 2004. Détermination de l’Indice Biotique Global Normalisé (IBGN). NF T 90-350, Association française de normalisation.

  • Barranguet, C., F. P. van den Ende, M. Rutgers, A. M. Breure, M. Greijdanus, J. J. Sinke & W. Admiraal, 2003. Copper-induced modifications of the trophic relations in riverine algalbacterial biofilms. Environmental Toxicology and Chemistry 22: 1340–1349.

    CAS  PubMed  Google Scholar 

  • Battin, T. J., L. A. Kaplan, D. Newbold & C. M. E. Hansen, 2003a. Contributions of microbial biofilms to ecosystem processes in stream mesocosms. Nature 426: 439–442.

    Article  CAS  PubMed  Google Scholar 

  • Battin, T. J., L. A. Kaplan, D. Newbold, J. D. Cheng & C. M. E. Hansen, 2003b. Effects of current velocity on the nascent architecture of stream microbial biofilms. Applied and Environmental Microbiology 69: 5443–5452.

    Article  CAS  PubMed  Google Scholar 

  • Bérard, A., U. Dorigo, J. F. Humbert, C. Leboulanger & F. Seguin, 2002. La méthode PICT (Pollution-Induced Community Tolerance) appliquée aux communautés algales. Intérêt comme outil de diagnose et d’évaluation du risque écotoxicologique en milieu aquatique. Annales de Limnologie 38: 247–261.

    Article  Google Scholar 

  • Bérard, A., U. Dorigo, I. Mercier, K. Becker van-Slooten & C. Leboulanger, 2003. Comparison of the ecotoxicological impact of triazines Irgarol 1051 and atrazine on microalgal cultures and natural microalgal communities in Lake Geneva. Chemosphere 53: 935–944.

    Article  PubMed  Google Scholar 

  • Bernhard, E. & G. E. Likens, 2004. Controls on periphyton biomass in heterotrophic streams. Freshwater Biology 49: 14–27.

    Article  Google Scholar 

  • Blanck, H., S. A. Wängberg & S. Molander, 1988. Pollution-induced community tolerance—a new ecotoxicological tool. In Cairns, J. & J. R. Pratt (eds), Functional Testing of Aquatic Biota for Estimating Hazards of Chemicals. ASTM STP, Philadelphia: 219–230.

    Chapter  Google Scholar 

  • Boivin, M. E. Y., B. Massieux, A. M. Breure, F. P. van den Ende, G. D. Greve, M. Rutgers & W. Admiraal, 2005. Effects of copper and temperature on aquatic bacterial communities. Aquatic Toxicology 71: 345–356.

    Article  CAS  PubMed  Google Scholar 

  • Boivin, M. E. Y., G. D. Greve, J. V. Garcia-Meza, B. Massieux, W. Sprenger, M. H. S. Kraak, A. M. Breure, M. Rutgers & W. Admiraal, 2007. Algal-bacterial interactions in metal contaminated floodplain sediments. Environmental Pollution 145(3): 884–894.

    Article  CAS  PubMed  Google Scholar 

  • Boshker, H. T. S. & T. E. Cappenberg, 1998. Patterns of extracellular enzyme activities in littoral sediments of Lake Gooimeer, The Netherlands. FEMS Microbial Ecology 25(1): 79–86.

    Article  Google Scholar 

  • Campbell, C. D., S. J. Chapman, C. M. Cameron, M. S. Davidson & J. M. Potts, 2003. A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Applied and Environmental Microbiology 69(6): 3593–3599.

    Article  CAS  PubMed  Google Scholar 

  • Chappel, K. R. & R. Goulder, 1994. Enzymes as river pollutants and the response of native epilithic extracellular-enzyme activity. Environmental Pollution 86: 161–169.

    Article  Google Scholar 

  • Chrost, R. J., 1990. Microbial ectoenzymes in aquatic environments. In Overbeck, J. (ed.), Aquatic Microbial Ecology, Biochemical and Molecular Approach. Brock/Springer Series in Contemporary BioScience.

  • Collectif, 2008. Relations entre structures paysagères, transferts hydriques et flux géochimiques, état écologique des milieux aquatiques, Rapport final du programme ECOGER-Papier, INRA-Cemagref, Coord: Grimaldi, C. & B. Montuelle: 33 pp.

  • Dale, V. H. & H. C. Beyeler, 2001. Challenges in the development and use of biological indicators. Ecological Indicators 1: 3–10.

    Article  Google Scholar 

  • DCE, 2005. Définition du bon état des eaux, constitution des nouveaux référentiels et des modalités d’évaluation de l’état des eaux douces de surface. Ministère de l’Ecologie et du Développement Durable (ed.): 17 pp.

  • DeLorenzo, M. E., P. Scott & P. E. Ross, 2001. Toxicity of pesticides to aquatic microorganisms: a review. Environmental Toxicology and Chemistry 20(1): 84–98.

    Article  CAS  PubMed  Google Scholar 

  • deNicola, D. M., E. de Eyto, A. Wemaere & K. Irvine, 2006. Periphyton response to nutrient addition in 3 lakes of different benthic productivity. Journal of North American Benthological Society 25: 616–631.

    Article  Google Scholar 

  • Dorigo, U., X. Bourrain, A. Berard & C. Leboulanger, 2004. Seasonal changes in the sensitivity of river microalgae to atrazine and isoproturon along a contamination gradient. Science of Total Environment 318: 101–104.

    Article  CAS  Google Scholar 

  • Dorigo, U., C. Leboulanger, A. Bérard, A. Bouchez, J. F. Humbert & B. Montuelle, 2007. Lotic biofilm community structure and pesticide tolerance along a contamination gradient in a vineyard area. Aquatic Microbial Ecology 50: 91–102.

    Article  Google Scholar 

  • Dorigo, U., M. Lefranc, C. Leboulanger, B. Montuelle & J. F. Humbert, 2009. Influence of sampling strategy on the assessment of the impact of pesticides on periphytic microbial communities in a small river. FEMS Microbial Ecology 67: 491–501.

    Article  CAS  Google Scholar 

  • Eisman, F. & B. Montuelle, 1999. Microbial methods for contaminants effects assessment in sediment. Reviews of Environmental Contamination and Toxicology 159: 41–93.

    Google Scholar 

  • Franz, S., R. Altenburger, H. Heilmeier & M. Schmitt-Janssen, 2008. What contributes to the sensitivity of microalgae to triclosan? Aquatic Toxicology 90: 102–108.

    Article  CAS  PubMed  Google Scholar 

  • Fuerhacker, M., 2009. EU Water Framework Directive and Stockholm Convention: can we reach the targets for priority substances and persistent organic pollutants? Environmental Science and Pollution Research 16: 92–97.

    Article  Google Scholar 

  • Garland, J. L., 1996. Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization. Soil Biology and Biochemistry 28: 213–221.

    Article  CAS  Google Scholar 

  • Gold, C., A. Feurtet-Mazel, M. Coste & A. Boudou, 2003. Impacts of Cd and Zn on the development of periphytic diatom communities in artificial streams located along a river pollution gradient. Archives of Environmental Contamination and Toxicology 44: 189–197.

    Article  CAS  PubMed  Google Scholar 

  • Guasch, H. & S. Sabater, 1998. Light history influences the sensitivity to atrazine in periphytic algae. Journal of Phycology 34: 233–241.

    Article  CAS  Google Scholar 

  • Guasch, H., N. Ivorra, V. Lehmann, M. Paulsson, M. Real & S. Sabater, 1998. Community composition and sensitivity of periphyton to atrazine in flowing waters: the role of environmental factors. Journal of Applied Phycology 10: 203–213.

    Article  Google Scholar 

  • Guasch, H., W. Admiraal & S. Sabater, 2003. Contrasting effects of organic and inorganic toxicants on freshwater periphyton. Aquatic Toxicology 64: 165–175.

    Article  CAS  PubMed  Google Scholar 

  • Guasch, H., E. Navarro, A. Serra & S. Sabater, 2004. Phosphate limitation influences the sensitivity to copper in periphytic algae. Freshwater Biology 49: 463–473.

    Article  CAS  Google Scholar 

  • Guasch, H., V. Lehmann, B. van Beusekom, S. Sabater & W. Admiraal, 2007. Influence of phosphate on the response of periphyton to atrazine exposure. Archives of Environmental Contamination and Toxicity 52: 32–37.

    Article  CAS  Google Scholar 

  • Harbott, E. L. & M. R. Grace, 2005. Extracellular enzyme response to bioavailability of dissolved organic C in streams of varying catchment urbanization. Journal of the North American Benthological Society 24: 588–601.

    Google Scholar 

  • Haury, J., M. C. Peltre, M. Trémolières, J. Barbe, G. Thiébaut, I. Bernez, H. Daniel, P. Chatenet, G. Haan-Archipof, S. Muller, A. Dutartre, C. Laplace-Treyture, A. Cazaubon & E. Lambert-Servien, 2006. A new method to assess water trophy and organic pollution—the Macrophytes Biological Index for Rivers (IBMR): its application to different types of river and pollution. Hydrobiologia 570: 153–158.

    Article  CAS  Google Scholar 

  • Hill, B. H., A. T. Herlihy, P. R. Kaufmann, R. J. Stevenson, F. H. Mc Cormick & C. Burch Johnson, 2000. Use of periphyton assemblage data as an index of biotic integrity. Journal of North American Benthological Society 19: 50–67.

    Article  Google Scholar 

  • Hussain, S., T. Siddique, M. Saalem, M. Arshad & A. Khalid, 2009. Impact of pesticides on soil microbial diversity, enzymes and biochemical reactions. Advances in Agronomy 102: 159–200.

    Article  CAS  Google Scholar 

  • Lagacherie, P., O. Diot, N. Domange, V. Gouy, C. Floure, C. Kao, R. Moussa, J. M. Robbez-Masson & V. Szleper, 2006. An indicator approach for describing the spatial variability of artificial stream networks in regard with herbicide pollution in cultivated watersheds. Ecological Indicators 6: 265–279.

    Article  Google Scholar 

  • Landry, D., S. Dousset & F. Andreux, 2004. Laboratory leaching studies of oryzalin and diuron through three undisturbed vineyard soil columns. Chemosphere 54: 734–742.

    Article  Google Scholar 

  • Lenoir, A. & M. Coste, 1996. Development of a practical diatom index of overall water quality applicable to the French national water Board network. In Whitton, B. A. & E. Rott (eds), Use of Algae for Monitoring Rivers II. Studia Student. G.m.b.H, Innsbruck, Austria: 29–43.

    Google Scholar 

  • Lopez, L., C. Pozo, B. Rodelas, C. Calvo & J. Gonzalez-Lopez, 2009. Influence of pesticides and herbicides presence on phosphatase activity and selected bacterial microbiota of a natural lake system. Ecotoxicology 15: 487–493.

    Article  Google Scholar 

  • Lyautey, E., S. Tessier, J. Y. Charcosset, J. L. Rols & F. Garabetian, 2003. Bacterial diversity of epilithic biofilm assemblages of an anthropised river section, assesed by DGGE analysis of a 16S rDNA fragment. Aquatic Microbial Ecology 33: 217–224.

    Article  Google Scholar 

  • Lyautey, E., C. R. Jackson, J. Cayrou, J. L. J. Rols & F. Garabetian, 2005. Bacterial community succession in natural river biofilm assemblages. Microbial Ecology 50: 589–601.

    Article  PubMed  Google Scholar 

  • Marzorati, M., L. Wittebolle, N. Boon, D. Dofonchio & W. Verstraete, 2008. How to get more out of molecular fingerprints: practical tools for microbial ecology. Environmental Microbiology 10: 1571–1581.

    CAS  PubMed  Google Scholar 

  • McClellan, K., R. Altenburger & M. Schmitt-Janssen, 2008. Pollution-induced community tolerance as a measure of species interaction in toxicity assessment. Journal of Applied Ecology 45: 1514–1522.

    Article  CAS  Google Scholar 

  • Montuelle, B. & B. Volat, 1998. Impact of wastewater treatment plant discharge on enzyme activity in sediments. Ecotoxicology and Environmental Safety 40: 154–159.

    Article  CAS  PubMed  Google Scholar 

  • Morin, S., M. Vivas-Nogues, T. T. Duong, A. Boudou, M. Coste & F. Delmas, 2007. Dynamics of benthic diatom colonization in a cadmium/zinc-polluted river (Riou-Mort, France). Fundamental and Applied Limnology 168: 179–187.

    Article  CAS  Google Scholar 

  • Morin, S., S. Pesce, A. Tlili, M. Coste & B. Montuelle, 2010. Recovery potential of periphytic communities in a river impacted by a vineyard watershed. Ecological Indicators 10: 419–426.

    Article  CAS  Google Scholar 

  • Othoniel, C., 2007. La croissance du biofilm photosynthétique: un indicateur du statut trophique des rivières? PhD Thesis, University of Bordeaux I: 245 pp.

  • Pérès, F., D. Florin, T. Grollier, A. Feurtet-Mazel, M. Coste, F. Ribeyre, M. Ricard & A. Boudou, 1996. Effects of the phenylurea herbicide isoproturon on periphytic diatom communities in freshwater indoor microcosm. Environmental Pollution 94: 141–152.

    Article  PubMed  Google Scholar 

  • Pesce, S., C. Fajon, C. Bardot, F. Bonnemoy, C. Portelli & J. Bohatier, 2006. Effects of the phenylurea herbicide diuron on natural riverine microbial communities in an experimental study. Aquatic Toxicology 78: 303–314.

    Article  CAS  PubMed  Google Scholar 

  • Pesce, S., C. Bardot, A. C. Lehours, I. Batisson, J. Bohatier & C. Fajon, 2008. Effects of diuron in microcosms on natural riverine bacterial community composition: new insight into phylogenetic approaches using PCR-TTGE analysis. Aquatic Sciences 70: 410–418.

    Article  CAS  Google Scholar 

  • Pesce, S., F. Martin-Laurent, N. Rouard & B. Montuelle, 2009a. Potential for microbial diuron mineralisation in a small wine-growing watershed: from treated plots to lotic receiver hydrosystem. Pest Management Science 65: 651–657.

    Article  CAS  PubMed  Google Scholar 

  • Pesce, S., I. Batisson, C. Bardot, C. Fajon, C. Portelli, B. Montuelle & J. Bohatier, 2009b. Response of spring and summer riverine microbial communities following glyphosate exposure. Ecotoxicology and Environmental Safety 72: 1905–1912.

    Article  CAS  PubMed  Google Scholar 

  • Pesce, S., C. Margoum & B. Montuelle, 2010. In situ relationships between spatio-temporal variations in diuron concentrations and phototrophic biofilm tolerance in a contaminated river. Water Research. doi:10.1016/j.watres.2009.11.053.

  • Rabiet, M., C. Margoum, V. Gouy, N. Carluer & M. Coquery, 2008. Transfert des pesticides et métaux dans un petit bassin versant viticole. Etude préliminaire de l’influence des conditions hydrologiques sur le transport de ces contaminants. Ingénieries EAT«Azote, phosphore et pesticides: stratégies et perspectives de réduction des flux»: 65–76.

  • Rabiet, M., C. Margoum, V. Gouy, N. Carluer & M. Coquery, 2010. Assessing pesticide concentrations and fluxes in the stream of a small vineyard catchment—effect of sampling frequency. Environmental Pollution 158: 737–748.

    Article  CAS  PubMed  Google Scholar 

  • Ricart, M., H. Guasch, D. Barcelo, A. Geiszinger, M. Lopez de Alda, A. M. Romani, G. Vidal, M. Villagras & S. Sabater, 2009. Effects of low concentrations of the phenylurea herbicide diuron on biofilm algae and bacteria. Chemosphere 76: 1392–1401.

    Article  CAS  PubMed  Google Scholar 

  • Rier, S. T. & R. J. Stevenson, 2002. Effects of light, dissolved organic carbon, and inorganic nutrients on the relationship between algae and heterotrophic bacteria in stream periphyton. Hydrobiologia 489: 179–194.

    Article  CAS  Google Scholar 

  • Romani, A. M. & S. Sabater, 2000. Variability of heterotrophic activity in Mediterranean stream biofilms: a multivariate analysis of physical–chemical and biological factors. Aquatic Sciences 6: 205–215.

    Article  Google Scholar 

  • Romani, A. M., H. Guasch, I. Munoz, J. Ruana, E. Vilalta, T. Schwartz, F. Emtlazi & S. Sabater, 2004. Biofilm structure and function and possible implications for riverine DOC dynamics. Microbial Ecology 47: 316–328.

    Article  CAS  PubMed  Google Scholar 

  • Rosemond, A. D., P. Mulholland & S. Brawley, 2000. Seasonally shifting limitation of stream periphyton: response of algal populations and assemblage biomass and productivity to variation in light, nutrients and herbivores. Canadian Journal of Fisheries and Aquatic Science 57: 66–75.

    Article  Google Scholar 

  • Rutgers, M., I. M. Van’t Verlaat, B. Wind, L. Posthuma & A. M. Breure, 1998. Rapid method for assessing pollution-induced community tolerance in contaminated soil. Environmental Toxicology and Chemistry 17: 2210–2213.

    Article  Google Scholar 

  • Sabater, S., 2000. Diatom communities are indicators of environmental stress in the Guadiamar river, S-W Spain, following a major mine tailings spill. Journal of Applied Phycology 12: 113–124.

    Article  CAS  Google Scholar 

  • Sabater, S., H. Guasch, M. Ricart, A. Romani, G. Vidal, C. Klünder & M. Schmitt-Jansen, 2007. Monitoring the effect of chemical on biological communities: the biofilm as an interface. Analytical and Bioanalytical Chemistry 387: 1425–1434.

    Article  CAS  PubMed  Google Scholar 

  • Schmitt, H., B. Martinali, P. Van Beelen & W. Seinen, 2006. On the limits of toxicant-induced tolerance testing: co tolerance and response variation of antibiotic effects. Environmental Toxicology and Chemistry 25: 1961–1968.

    Article  CAS  PubMed  Google Scholar 

  • Schmitt-Jansen, M. & R. Altenburger, 2005. Community-level microalgal toxicity assessment by multiwavelength-excitation PAM fluorometry. Aquatic Toxicology 86: 49–58.

    Article  Google Scholar 

  • Schmitt-Jansen, M., U. Veit, G. Dudel & R. Altenburger, 2008. An ecological perspective in aquatic ecotoxicology: approaches and challenges. Basic and Applied Ecology 9: 337–345.

    Article  CAS  Google Scholar 

  • Sinsabaugh, R. L., M. M. Carreiro & D. A. Repert, 2002. Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss. Biogeochemistry 60: 1–24.

    Article  CAS  Google Scholar 

  • Stevenson, R. J. & Y. P. Pan, 1999. Assessing environmental conditions in rivers and streams with diatoms. In Stoermer, E. F. & J. P. Smol (eds), The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, UK: 11–40.

    Chapter  Google Scholar 

  • Teissier, S. & M. Torre, 2002. Simultaneous assessment of nitrification and denitrification on freshwater epilithic biofilms by acetylene block method. Water Research 36: 3803–3811.

    Article  CAS  PubMed  Google Scholar 

  • Tlili, A., U. Dorigo, B. Montuelle, C. Margoum, N. Carluer, V. Gouy, A. Bouchez & A. Bérard, 2008. Responses of chronically contaminated biofilms to short pulses of diuron. An experimental study simulating flooding events in a small river. Aquatic Toxicology 87: 252–263.

    Article  CAS  PubMed  Google Scholar 

  • Toräng, L., N. Nyholm & H. J. Albrechtsen, 2003. Shifts in biodegradation kinetics of the herbicide MCPP and 2, 4-D at low concentrations in aerobic aquifer materials. Environmental Science and Technology 37: 3095–3103.

    Article  PubMed  Google Scholar 

  • Villeneuve, A., 2008. Effets conjoints de facteurs physiques et chimiques sur la structure et la composition du périphyton: une approche multi échelle, PhD Thesis, U. de Savoie: 223 pp.

  • Villeneuve, A., B. Montuelle & A. Bouchez, 2010. Effect of minor changes in light intensity, current velocity and turbulence on the structure and function of the periphyton. Aquatic Sciences 72: 33–44.

    Article  Google Scholar 

  • Vu, S. H., S. Ishihara & K. Watanabe, 2006. Exposure risk assessment and evaluation of the best management practice for controlling pesticide runoff from paddy fields. Part 1: paddy watershed monitoring. Pesticides Management Science 62: 1193–1206.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the two anonymous reviewers for improving the manuscript. They also thank Marjorie Maréchal for Microresp® assays; Laurence Blanc for extracellular enzymes measurements; Bernard Motte for field surveys; Christelle Margoum, Josiane Gahou, Céline Guillemain and Marina Coquery for chemical analysis and for the Morcille river database. The Ardières-Morcille experimental watershed is supported by the LTER Rhône Basin (ZABR). English was checked by ATT Scientific and Technical Translation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Montuelle.

Additional information

Guest editors: R. J. Stevenson, S. Sabater / Global Change and River Ecosystems – Implications for Structure, Function and Ecosystem Services

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montuelle, B., Dorigo, U., Bérard, A. et al. The periphyton as a multimetric bioindicator for assessing the impact of land use on rivers: an overview of the Ardières-Morcille experimental watershed (France). Hydrobiologia 657, 123–141 (2010). https://doi.org/10.1007/s10750-010-0105-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0105-2

Keywords

Navigation